Difference between revisions of "Projets:Lab:2018:Hermes Lite"
(→Montage) |
(→Quoi, pour qui, comment ?) |
||
(2 intermediate revisions by one user not shown) | |||
Line 240: | Line 240: | ||
Ce filtre est un préselecteur spécifiquement étudié pour servir de « frontend » à un émetteur-récepteur SDR Hermes Lite V2 (voir la page qui lui est consacré). | Ce filtre est un préselecteur spécifiquement étudié pour servir de « frontend » à un émetteur-récepteur SDR Hermes Lite V2 (voir la page qui lui est consacré). | ||
+ | |||
+ | [[File: N2ADR-1-small.jpg|400px|left|thumb|Une version du filtre N2ADR modifiées, vue de dessus]] | ||
+ | [[File:N2ADR-3-small.jpg|300px|right|thumb|Filtre N2ADR vue de dessous, soudé en version "piggy back" (voir plus bas)]] | ||
+ | |||
Il est constitué de 6 sections « passe bas » dont le rôle principal est d’atténuer très fortement les harmoniques 2 et 3 de la fréquence d’émission choisie, et d’un passe-haut servant à couper, en réception, les éventuelles perturbations de la portions « ondes longues » et « ondes moyennes » provoquées par les grandes stations de broadcast. | Il est constitué de 6 sections « passe bas » dont le rôle principal est d’atténuer très fortement les harmoniques 2 et 3 de la fréquence d’émission choisie, et d’un passe-haut servant à couper, en réception, les éventuelles perturbations de la portions « ondes longues » et « ondes moyennes » provoquées par les grandes stations de broadcast. | ||
Line 281: | Line 285: | ||
La première étape se limite à un peu de mécanique, et est totalement optionnelle : limer (ou ne pas limer) un décrochement sur le pcb coté « entrée Hermes ». | La première étape se limite à un peu de mécanique, et est totalement optionnelle : limer (ou ne pas limer) un décrochement sur le pcb coté « entrée Hermes ». | ||
− | |||
[[File:Encoches.jpg|700px|center|thumb|Encoches de connecteurs d'entrée. Cette modification est purement cosmétique]] | [[File:Encoches.jpg|700px|center|thumb|Encoches de connecteurs d'entrée. Cette modification est purement cosmétique]] | ||
Line 302: | Line 305: | ||
Etape 9 : soudez les connecteurs SMA « canon long » coté sortie. | Etape 9 : soudez les connecteurs SMA « canon long » coté sortie. | ||
+ | |||
+ | [[File:Sma.JPG|400px|center|thumb|Les SMA "canon court" sont plus adaptés à des raccordements internes. Les "canons longs" sont plutôt indiqués lorsque les connecteurs doivent traverser une cloison ou un blindage. Ces connecteurs contribuent à la fixation du circuit imprimé dans son boitier]] | ||
Selon que vous adoptez une disposition « en ligne » ou en cartes superposées, vous installerez soit un « jumper » 20 broches sur CN2, soit vous souderez des connecteurs coaxiaux SMA « canon court » et un connecteur Molex kk 9 broches mâle (voir photo) | Selon que vous adoptez une disposition « en ligne » ou en cartes superposées, vous installerez soit un « jumper » 20 broches sur CN2, soit vous souderez des connecteurs coaxiaux SMA « canon court » et un connecteur Molex kk 9 broches mâle (voir photo) |
Latest revision as of 10:42, 22 May 2019
Assemblage de la carte Hermes Lite V2, SDR 12 bits 60 MSPS
Page référencée dans Passion :
Radio Radios logicielles, transmissions numériques, expérimentations HF
Contents
Quoi ?
Hermes Lite est la seconde version d’un SDR de type DDC/DUC conçu par Steve Haynal KF7O, et reposant essentiellement sur un AD9866 circuit spécialisé initialement conçu pour les câbloopérateurs. Ce composant regroupe un DAC pour la synthèse de signaux d’émission et d’un ADC 12 bits 80 Millions d’échantillons par seconde (MSPS) pour l’échantillonnage coté réception, le tout entouré des étages d’amplification ou d’atténuation nécessaires.
Une première version utilisait une clef USB destinée aux développeurs, intégrant un FPGA et ses circuits périphériques, dont une interface Ethernet assurant la liaison avec l’ordinateur chargé du travail de modulation/démodulation par logiciel. Le FPGA, quant à lui, est essentiellement chargé d’effectuer le pré-traitement des signaux numériques provenant ou à destination d’un logiciel « client » (Quisk, PowerSDR, GNU-Radio… ). Cette architecture ADC/FPGA/port Ethernet est comparable à celle des transceivers développés par le groupe OpenHPSDR (HPSDR, Hermes et autres évolutions de cette architecture). Le firmware développé par Steve KF7O est un portage fidèle de celui également développé par le groupe OpenHPSDR. Hermes Lite est, par conséquent, totalement compatible avec les logiciels prévus pour fonctionner avec des transceivers tels que l’Odyssey, le HiQSDR, la famille Anan etc, et peut servir de « matériel d’initiation » aux radios logicielles à échantillonnage et synthèse directe.
La seconde version de ce Hermes respecte en tous points cette architecture, sans souffrir des inconvénients de la V1 (montage très « prototypesque » assemblé à grand renfort de connecteurs exotiques). AD9866, interface Ethernet gigabit, horloges, FPGA sont désormais tous regroupés sur un seul et même pcb, de 10x10 cm. Sur cette même carte se trouve également un réseau multitensions d’alimentation, et un push-pull de transistors LD-Mos qui délivre 5W HF de 1 à 30 MHz. Une carte de filtrage optionnelle de 5x10 cm accompagne cet ensemble.
Le montage compte un peu moins de 250 composants (certains totalisent un nombre impressionnant de pattes… disons que l’ensemble doit friser les 700 à 800 points de soudure) et nécessite à peu près 3 jours complets de travail entre le moment ou l’on pose la première brasure et celui ou le dernier point refroidit. A ceci l’on doit ajouter à peu près autant de temps en matière de travaux mécaniques selon le type d’intégration que l’on envisage, et une bonne journée doit être réservée aux tests et à la programmation.
Pour qui ?
Cette page est destinée aux radioamateurs et hackers qui souhaitent construire un Hermes Lite V2 (release 7), SDR capable de traiter un spectre de 30 MHz d'une seul bloc, et 6 ou 7 récepteurs virtuels. Est également concernée toute personne cherchant à comprendre ce qu’est un émetteur-récepteur de type DDC/DUC, ainsi qu’aux hackers en quête d’une plateforme d’échantillonnage capable de servir d’analyseur vectoriel, de fréquence intermédiaire pour tout type de transmission sur n’importe quelle fréquence.
A la fois open hardware et open software, ce système peut être modifié, perfectionné, détourné ad libitum, et offre, par défaut, une pleine et entière compatibilité avec le socle matériel et logiciel du groupe OpenHPSDR (HPSDR, Hermes, Odyssey, HiQSDR, et clones du commerce tels que les transceivers d’Apache Labs)
Pourquoi ?
- Parce que c’est actuellement le moins cher des transceivers SDR DDC/DUC et que le montage « perso » permet d’économiser quelques euros
- La réalisation d’un tel montage est l’occasion pour chacun de se frotter aux composants de taille « petite mais non inhumaine » : composants passifs format 0603, circuits intégrés en boitier QFN, QFP, TSSOP et quelques rares SOIC. Pas de boitier BGA, mais au moins deux éléments délicats à souder, un quartz et un oscillateur. Ce n’est pas une réalisation pour débutant, ce n’est pas non plus un projet pour « semi-pro » et autre gourous de la HF.
- C’est également un montage riche d’enseignements en matière de programmation, debugging logiciel et matériel, architecture radio… etc.
- C’est enfin un excellent transceiver qui, pour le quart ou le huitième du prix d’un appareil du commerce, offrira au moins des performances comparables, au mieux une sensibilité et un dynamique largement supérieure. Seul inconvénient, pour moins de 200 euros, vous ne posséderez ni de bouton brillants,ni d’un logo clinquant, encore moins d'une référence genre 4375DX-2
Comment ?
Chaque personne souhaitant s’engager dans un tel projet doit maitriser les rudiments de la brasure des composants électroniques à montage de surface, et posséder :
- Un fer à souder équipé d’une panne « aiguille », à température réglable
- De quoi nettoyer régulièrement ladite panne aiguille
- Du flux, du flux, du flux. L’un des meilleurs -mais hélas un peu cher- est le flux pâteux vendu en seringues, de la marque CIF (le Circuit Imprimé Français). Un flux artisanal obtenu par mélange de colophane et d’alcool isopropylique s’avère tout aussi efficace mais exige un nettoyage plus énergique.
- Du fil de soudure de diamètre 0,3 ou 0,35 SnPb ou SnPbAg (l’utilisation de soudure ROHS est fortement déconseillée)
- Au mieux une loupe binoculaire, au pire une « caméra microscope USB »
- Un jeu de pinces précelles à becs très fins et très pointus
- De l’alcool isopropylique pour nettoyer le flux demeuré sur le pcb après soudures
- Un wagon de coton-tige également destinés au nettoyage
- De la patience
- Un bon éclairage
- Un oscilloscope (optionnel) ou une clef RTL-SDR capables de fonctionner en mode « échantillonnage direct » (vérification de fonctionnement des deux oscillateurs)
- Un voltmètre
- Encore plus de patience et de constance
En cas de panique, un forum consacré au montage du Hermes Lite est ouvert à tous et met en relation débutants et monteurs expérimentés.
Ressources
Le portail du projet Hermes Lite donne accès aux multiples ressources nécessaires au montage et à l’utilisation de ce SDR :
- Un groupe de discussion (en anglais) sur les serveurs Google Group
- Un Wiki offre une foultitude d’informations sur les méthodes de test, d’assemblage et extensions possibles (notamment en matière de filtrage)
- Les fichiers du firmware ainsi que les schémas électroniques et fichiers indispensables à la réalisation des circuits imprimés
- Dans le répertoire « hardware » se trouvent les fichiers spécifiques à la version 7 du montage
- ... Et notamment les listes de composants (BOM) ainsi que la « BOM interactive », fichier html qui facilite le repérage de chaque série de composants à assembler (hl2b7-ibom.html)
- Enfin, une BOM des composants actifs File:Hermeslite2bom achat.xlsx destinée aux amateurs Européens (via Mouser), qui épargne donc aux particuliers la nécessité de s’acquitter des frais de commissionnaire en douane imposés par DigiKey.
Guide de montage rapide
Imprimez le fichier BOM « bom.assembly.pdf », le schéma « hermeslite.pdf » puis ouvrez dans un navigateur le fichier de la BOM interactive hl2b7-ibom.html. Prenez un moment pour « lire » le plan, situer les différents étages (dac/adc, sortie Ethernet, alimentations, préamplification et amplification émission, fpga… ). Notez que tout composant marqué « DNI » (do not install) est généralement destiné à faciliter certains tests ou modifications. Ils ne doivent pas être montés dans la version de « production », sauf désirs particulier du monteur.
Attention, le nombre de composants dans chaque kit correspond très exactement au nombre nécessaire pour chaque montage, ne perdez aucune pièce.
Les passifs
Soudez la grande majorité des condensateurs de 0,1uF. Il y en a près d’une centaine. Si vous êtes débutant, c’est le moyen le plus sûr pour s’échauffer et se préparer à la brasure des composants plus miniaturisés. N’installez pas le moindre composant s’il se trouve dans l’immédiate proximité (5mm) d’un circuit intégré, particulièrement les boitiers QFN et TSSOP ou les deux quartz et oscillateur.
A chaque composant posé, biffez son symbole sur le schéma hermeslite.pdf.
- Déposez une légère gouttee de soudure sur un pad (si possible celui qui n’est pas côté GND, en raison de la forte inertie thermique de ce côté de l’empreinte)
- Tout en contrôlant l’alignement du composant à la loupe binoculaire, glissez le condensateur à plat sur le pcb, jusqu’à ce qu’il arrive en contact avec la goutte de soudure précédemment déposée.
- Appliquez la pointe du fer sur la goutte d’étain, faites pénétrer le composant dans le point de métal en fusion. Vérifiez le centrage du composant de façon à ce que les « pad » de soudure situés des deux côtés soient facilement accessibles
- Retirez le fer. La brasure, une fois refroidie, doit maintenir le composant en place.
- Soudez l’autre côté du composant, en prenant garde à ce que le métal fondu progresse sur le pcb et le contact du composant par capillarité
- Déposez une très légère couche de flux sur la première soudure, puis re-chauffez la première brasure tout en exerçant une légère pression sur le composant. Cette opération a deux but : d’une part éliminer l’oxydation du premier point de soudure, qui a été chauffé durant une période peut-être un peu trop longue lors du placement du condensateur. D’autre part, la pression sur le composant permet de tester si le second point de brasure a bel et bien été réalisé dans les règles de l’art. En cas de « collage » (mauvaise soudure ), le composant partira sous la pression de la panne. Vous l’avez compris, dans ce cas, il faut tout recommencer.
Une fois les 100 nano posés, passez successivement
- Les ferrites
- Les jumpers (résistances de 0 Ohms) marqués « JNC » (jumper normally closed)
- Les condensateurs 10uF 0603
- Les résistances 10k
- Les résistances 4,7k
- Et ainsi de suite jusqu’au dernier composant passif « éloigné » de tout circuit intégré et par ordre décroissant de quantité (R55, 120 Ohms).
- Ajoutez les 3 résistance de pull-up de 3.3k R117, R118 et R119 (face inférieure, tiers inférieur, dans l’alignement de Q2. Ces résistances ne sont pas mentionnées dans la BOM "production" de la "release" 7
- Vérifiez que vous n'avez pas oublié de placer un jumper 0 Ohms en lieu et place de L33 et L34
- Soudez les selfs de filtrage L4 à L11. Attention, ces composants sont délicats et très sensibles à la chaleur, procédez avec précaution. Vérifiez à l’Ohmmètre la continuité du circuit après que chaque self ait été posée.
- Installez les LED D2 à D5
- Certaines résistances et condensateurs sortent des tables de valeur conventionnelles. Ces valeurs peuvent être obtenues par mise en parallèle de deux composants
R11 => 35,7k avec 68k+75k (valeur résultante : 35,66k) R19 => 16,2k avec 30k+36k (valeur résultante : 16,36k) R34 => 12,1k avec 27k+22k (valeur résultante : 12,12k) R12, R91 => 11,5k avec 20k+27k (valeur résultante : 11,49k) C84 => 270pf avec xxxxxxxxxxxxx - Nombre de ces résistances "composées" se trouvent dans l'immédiate périphérie des régulateurs (résistance de réglage de tension) et ne devront être installées qu'après qu'aient été soudés les circuits en question.
Offrez-vous une bière, une rasade de perchlorure, une tisane ou un rahat-loukoum selon votre planète d’origine, vous venez d’abattre la partie la moins passionnante de ce montage
Les alimentations
- Vérifiez au voltmètre, position "test de continuité", s'il n'y a pas de court-circuit entre les différents rails d'alimentation et la masse, ainsi qu'entre les différents rails entre eux. Un court-jus entre le 12V et la trace 1,2V signera l'arrêt de mort du circuit PHY et du FPGA.
- Installez U3, U16, U8, U19, U12, U17, Q1, D12, (cette dernière sous le pcb, près de DB9) et leur composants passifs périphériques. Il est fortement recommandé de réaliser cette opération sous loupe binoculaire, car le centrage des circuits intégrés est délicat. Trop décalés, et il devient plus difficile d’obtenir de belles remontées de brasure sur un des coté des C.I.. A noter, D1 n’a pas de sens de montage.
Attention : le repère de la broche 1 est matérialisé par un des coté du CI taillé en biseau. Ce biseau est orienté vers le « bas » de la carte, le coté opposé jouxtant les grosses inductances L1, L2 et L3 (voir photo)
- Après application d’une goutte de flux, faites couler un petit point de brasure sur la semelle de chaque régulateur ST1S10 via les trous situés sous ces composants (face inférieur du pcb). Ce rappel de masse est primordial pour la stabilité de la tension de sortie des alimentations. Prenez garde à l’inertie thermique de cette semelle et du plan de masse du pcb. Une panne aux alentours de 330 °C peut faciliter la fusion de la brasure, une température plus élevée serait dangereuse tant pour le composant que pour le support.
Une bonne couche de flux favorisera la propagation de la brasure sous les contacts de L1, L2, L3 et du fusible à réarmement automatique F1.
- Vérifiez la présence de J24. Sans ce jumper, le comportement de la mise en marche de l’alimentation est modifié.
- Installez l’un des deux connecteurs d’alimentation.
- Placez le montage sur une surface isolante, écartez tout générateur de crème de court-jus (pinces précelle, bobine de soudure, tournevis, fer à souder, cutter…)
- Si vous disposez d’une alimentation limitée en courant, réglez là entre 12 et 15V 150 mA maxi
- Branchez l’alimentation, mettez le montage sous tension. Gardez une main sur le bouton marche/arrêt de cette alimentation, coupez immédiatement en cas de fumée bleuâtre, odeur âcre ou flash de lumière… cela arrive aux meilleurs d’entre nous. Si rien ne fume, placez le bord de la main sur les principaux circuits intégrés de l’alimentation, aucun ne doit être chaud (il n’y a aucun débit)
- Avec un voltmètre, mesurez chaque sortie d’alimentation
Côté chaud de L1, L2 et L3 pour 3.3V, 1.2V (tension fpga, PHY, mémoire, ADC/DAC) et 8V (tension P.A.)
Coté chaud de C25/broche 5 de U17 pour 2.5V (fpga) Côté chaud de C88/broche 5 de U19 (10V bias) Côté chaud de R91/broche 1 de U12 (10.15V driver ampli op) Notez qu'à ce stade, les tensions 8V PA et 10V bias ne peuvent être activée qu'en injectant V-Alim (éventuellement tamponné avec une résitance de pull-up) sur les broches "ENable" de U8, U19 et U12.
En cas d’absence d’une de ces tensions et chaleur anormalement élevée d’un régulateur, soupçonnez la présence d’un court-circuit (goute de soudure, condensateur de découplage mal soudé… ). En aucun cas ne poursuivez la construction du Hermes Lite tant que ce gremlin n’aura pas été tué.
- Une fois cette première série de mesure achevée, reprenez, rail par rail, chaque tension et vérifiez sa présence sur les « pads » (pastilles de brasure) des composants actifs qui seront alimentés .
Exemple : VPA (8V) au bornes 3 et 4 de U14, au point milieu de T3 et sur les drains de Q3 et Q4 si vous avez installé T3 ou avez provisoirement court-circuité par un petit bout de fil tous les points du primaire de l’empreinte du transformateur. Chaque point d’alimentation direct, notamment sur les pads de soudure du fpga et des trois circuits intégrés QFN doivent être vérifiés. 1,2V sur tous les VCCD_PL et VCCINT du fpga et DVDDL du PHY 2.5V sur les VCCA et MSEL du fpga …etc
- En cas d’absence d’une de ces tensions, vérifiez les soudures des jumpers JNC, des ferrites FBx. Ce contrôle nécessite au moins une bonne heure de travail.
Interface Ethernet et Versaclock
- Soudez le quartz 25 MHz.
Pour ce faire, étamez très légèrement les pastilles du PCB et collez un point de soudure sur les contacts du quartz (une couche de flux aidera à maintenir cette soudure sous forme de goutte. Ajoutez une couche de flux sur cet étamage. Positionnez le quartz à l’aplomb de ses empreintes, centré au mieux. Maintenez une pression verticale sur le capotage du composant (pointe de pince précelle par exemple)
A ce stade, deux méthodes :
- Soit vous soudez les contacts du quartz en ajoutant un peu de brasure et en faisant en sorte que la capillarité facilite le déplacement du métal en fusion sous le composant (méthode délicate)
- Soit vous maintenez une légère pression verticale sur le quartz et soumettez le composant à un jet d’air chaud avec une station de reprise. Choisir la buse la plus étroite (4 mm par exemple)
L'expérience de montage de 4 hermes lite tend à prouver que la seconde méthode est, de loin, la plus rapide et la plus efficace.
- Tartinez de flux le pad « semelle » du transceiver Ethernet, posez le composant en place, faite TRÈS attention à la position du repère (le point doit se trouver du coté du quartz). Centrez-le à la binoculaire, puis soudez l’un des contacts et pad situé dans un angle. Revérifiez le centrage du composant, l’absence de perte de pas sur les quatre faces. Le moindre décalage exigera une retouche du point de soudure et un déplacement du QFN.
Lorsque tout est bon, collez un second point de soudure sur l’angle diamétralement opposé du composant. Revérifiez une fois de plus l’alignement des contacts et des pads, la bonne position du « point » repère.
- Déposez un cordon de flux sur la périphérie du composant. Branchez une panne tournevis de petite taille (RT4 Weller par exemple), mouillez la panne à l'étain, puis glissez la panne le long de l’ange formé par le bord du QFN et le plat du PCB, en partant d’un côté ne comportant aucun des deux points de soudure précédemment effectué. La brasure doit s’appliquer sans difficulté, sans pont, sur la totalité des points. Ignorez d’éventuels ponts de soudure, ils seront éliminés à la tresse en fin d’opération. Répétez ce travail sur les trois côtés restant, éliminez ensuite les éventuels ponts de soudure, en prenant soin de repasser une panne légèrement étamée sur les contacts. Ne lésinez surtout pas sur le flux.
- soudez les composants périphériques, notamment R134, C36 et C37, C38 et C40, éventuellement FB9 et FB11 si ces ferrites n’ont pas déjà été soudés.
- Branchez à nouveau l’alimentation, connectez une sonde d’oscilloscope sur le côté chaud de C36. Une sinusoïde à 25 MHz doit s’afficher. Dans le cas contraire, vérifiez la brasure des capas talon, tentez de resouder le quartz avec un jet d’air chaud très directif -attention à la présence du transceiver Ethernet, vérifiez en visée rasante et en lumière affleurante la qualité des points de soudure du QFN.
- Répétez strictement la même procédure, avec la même attention, pour l’ensemble oscillateur 38.4 MHz/horloge Versaclock. La seule précaution à prendre et l’orientation de l’oscillateur et son centrage submillimétrique sur l’empreinte (les deux plots centraux ne sont pas utilisés et ne doivent pas entrer en contact avec les pads latéraux). Le repère de l’oscillateur -petit cercle situé dans l’ange inférieur gauche de l’oscillateur- doit pointer en direction de l’emplacement R38.
- Soudez les composants passifs périphériques restants : R39, 41, 42, 45, B63, B57.
- Branchez à nouveau l’alimentation, connectez une sonde d’oscilloscope sur le plot de soudure situé sous B57. Une sinusoïde à 38.4 MHz doit s’afficher. Dans le cas contraire, tentez de resouder l’oscillateur avec un jet d’air chaud très directif -attention à la présence du Veraclock-, vérifiez en visée rasante et en lumière affleurante la qualité des points de soudure du QFN.
ADC/DAC, FPGA et les autres
Les opérations restantes relèvent de la promenade de santé comparées aux deux précédentes. L’AD9866 se brase de la même manière que les circuits Versaclock et PHY. Le repère du circuit intégré doit pointer vers la marque « U7 » et le cercle imprimé sur le masque de soie. Les condensateurs périphériques sont ajouté après coup. Ne pas oublier J10. La semelle de l’AD9866 doit impérativement être soudée pour éviter les risques d’auto-oscillation et améliorer la dissipation thermique de ce circuit. Si vous possédez un dissipateur pour boitier de ce type, collez le à ce stade.
- Le boitier du FPGA est marqué par deux cercles diamétralement opposés. L’un est le point d’injection de la résine époxyde lors de l’encapsulation du circuit intégré, l’autre est le repère de la broche 1… il est primordial de ne pas les confondre. Le « repère » est d’un diamètre plus petit que le point d’injection et doit être positionné sur le repère « U2 » du masque de soie, et en direction de l’empreinte CL4. Lorsque le FPGA est positionné correctement et que la carte est placée à l’endroit, face au monteur (mention « hermes-Lite 2.0-Build7 » lisible ,située en bas, à gauche de la platine), le texte « Altera Cyclon IV » doit être « à l’envers ». Vérifiez bien avec les photos ci-jointes.
- N’oubliez surtout de souder la semelle du FPGA pour éviter certains comportements bizarres des GPIO
- placez U15 et composants périphériques R47, B108
- Placez U9 et composants périphériques R51, R56, R59, R63
- Placez U13 et composants périphériques J23, B94
- Placez U1 et composants périphériques R1,R2, R3
- Placez U14 et composants périphériques. Le repère de la broche 1 est matérialisé par un trait perceptible en lumière rasante. Ce trait doit se trouver du coté de l’inscription « U14 » sur le masque de soie. La résistance shunt (fournie dans le kit) est montée après coup, ainsi que B122 et C18
- Terminez le montage par les derniers composants périphériques : les deux transformateurs, (T2, D1, J17, J19) et (T1, C81), tous les transistors Q2 à Q6, B118 proche de Q6
Nettoyage
A ce stade, aucun composant fragile (transformateurs, relais, connecteurs) n’est installé. Laissez tremper la carte dans un bain d’alcool isopropylique durant une nuit, dans un récipient fermé, le liquide affleurant la face supérieure. Nettoyez énergiquement à la brosse à dent douce les résidus de flux le lendemain, rincez une nouvelle fois à l’alcool, puis brossez à nouveau la carte sous un flux d’eau tiède et de liquide vaisselle. Après un rinçage abondant et un séchage (air comprimé si disponible), la carte est quasiment achevée.
Le Grand Final (ou presque)
- Il ne doit rester à installer que les « gros » composants : T3 à bobiner selon les instructions du schéma et en fonction du type de ferrite binoculaire que l’on possède, le relais K2, le connecteur jack CN4 et le « magjack » Ethernet.
Ceci achève les instructions de montage du SDR proprement dit. Il manque à ce circuit au minimum un filtre passe-bas (N2ADR ou Alexiares_lpf).
Bout filtre ? L'extension de N2ADR
Quoi, pour qui, comment ?
Ce filtre est un préselecteur spécifiquement étudié pour servir de « frontend » à un émetteur-récepteur SDR Hermes Lite V2 (voir la page qui lui est consacré).
Il est constitué de 6 sections « passe bas » dont le rôle principal est d’atténuer très fortement les harmoniques 2 et 3 de la fréquence d’émission choisie, et d’un passe-haut servant à couper, en réception, les éventuelles perturbations de la portions « ondes longues » et « ondes moyennes » provoquées par les grandes stations de broadcast.
La combinaison de ces filtres forment une sorte de « passe bande » de largeur variable, d’autant plus large que la fréquence de travail est élevée. Une exception cependant : le passe-haut est désactivé sur la bande 160m. A noter que la combinaison du hpf et du lpf provoque une légère perte d'insertion sur le 80 mètres.
Ci-après, les courbes d'amplitude des différents filtres
Tout possesseur de HL v2.x peut se procurer un circuit imprimé auprès du service « boutique » de l’Electrolab (3 euros, frais de port non compris). Uneachat.xlsx BOM peut être téléchargée qui n’utilise que des composants référencés en Europe (distributeur Mouser)
Aucun groupement d’achat ne sera effectué, les composants utilisés étant excessivement courants et faciles à sourcer si l’on ne souhaite pas utiliser ladite BOM.
Ce filtre peut être installé de deux manière :
- - soit dans le prolongement de la carte Hermes Lite V2.x, (prise alimentation, réseau diodes LED d’état et prise CW en face avant, prises coaxiales de sortie HF et commande TX/RX pour amplificateur sur la face arrière)
- - soit en « miroir » au dessus du HL 2 Dans ce second cas, un dessin de façade peut aider à la réalisation des différents perçages de la face avant du transceiver (toutes les sorties réunies sur la même façade)
La façade
En fonction de la méthode de raccordement du filtre et de la carte Hermes Lite, deux façades et une face arrière sont envisageable.
- - La version « stack » avec tous les connecteurs sur une seule et unique face
- - La version « inline » avec une face avant supportant les connecteurs d’alimentation, Ethernet, entrée CW et les lumières situées en regard des LED, et une face arrière regroupant les trois prises coaxiales SMA (TX 5W, TX faible puissance, Réception) ainsi que la sortie du signal TX/RX pour piloter une commutation de transverter, d’amplificateur etc.
Description rapide
Le filtre N2ADR présenté ici est une légère variante du filtre originale dessiné par James Ahlstrom http://james.ahlstrom.name/hl2filter/ . Il diffère en3 points :
- Toutes les sorties du Hermes Lite sont directement supportées et ne nécessitent pas de câblage interne spécifique. Le passage du mode «émission 5W » au mode « faible puissance/full duplex » est « mécaniquement transparent » si l’on ose dire.
- Le connecteur de sortie « sortie commande d’émission/réception » utilise le même type de jack que celui utilisé par le Hermes Lite pour « l’entrée commande émission/réception » (ou CW) .Les prises Cinch étant à la fois peu élégantes et plus coûteuses qu’un jack stéréo femelle.
- Le circuit imprimé n’utilise que 2 couches (4 sur le design originel). Cette disposition divise le prix de chaque pcb par 4. Les mesures effectuées tendent à prouver que cette modification n’affecte pas le comportement et les performances des filtres. La tension maximale pour 5W sous 50 Ohms est de 22 V. Mais en cas de réfléchi important (lorsque précisément la « charge » que représente l’antenne n’est pas proche d’une impédance de 50 Ohms), cette tension peut fortement varier et atteindre des sommets. La tension nominale de service des condensateurs des filtres doit donc nécessairement être au moins de 100V, 200V étant préférable. Les capas 50V peuvent convenir durant les essais en cas de « panne sèche » des valeurs souhaitées, mais c’est là un pis-aller.
Montage
La première étape se limite à un peu de mécanique, et est totalement optionnelle : limer (ou ne pas limer) un décrochement sur le pcb coté « entrée Hermes ».
Dans un second temps, soudez les composants actifs (ampli op AD8692, décodeur I2C/décimal MCP23008, la rampe de darlington ULN2003, la porte NAND unique 7400, la diode 4148 (attention au sens !) , le ferrite FB1 et enfin les deux paires de diode de détection BAS40-07. Attention à leur sens de branchement, ces composants sont « presque » symétriques, et seule la broche 1 (cathode) est plus large que les trois autres.
Etape 3 : soudez les multiples condensateurs de découplage de 10 nano Farad.
Etape 4 : soudez les capas des filtres ainsi que les selfs. De cette manière, il est aisé de braser les composants situé près des emplacements des relais -voir même entre lesdits relais- sans risquer de les carboniser par une coup de fer malheureux.
Etape 5 : Une fois les filtres montés, il faut raccorder les deux câbles coaxiaux de liaison « RX » et « TX low power ». Cette liaison est réalisée avec du câble coaxial 2mm qui sera soudé en respectant les étapes suivantes
Etape 6 : Bobinez 10 tours de fil entre 4 et 6 dixièmes de mm (si possible émaillé) sur un tore de ferrite FT37_77 ou FT37-72 (inductance de 90 à 100µH) et soudez le à son emplacement, sur les pads de soudure rectangulaires. Le primaire du transformateur est réalisé par une unique boucle faite d’un fil de 8 dixièmes isolé passant par le centre du tore, et reliant les deux bout de piste étamée situés de chaque coté du tore.
Etape 7 : soudez les derniers composants passifs -résistances du réflectomètre.
Etape 8 : installez les 7 relais
Etape 9 : soudez les connecteurs SMA « canon long » coté sortie.
Selon que vous adoptez une disposition « en ligne » ou en cartes superposées, vous installerez soit un « jumper » 20 broches sur CN2, soit vous souderez des connecteurs coaxiaux SMA « canon court » et un connecteur Molex kk 9 broches mâle (voir photo)
Etape 10 : soudez le connecteur Jack stéréo CN1 de sortie TX/RX
Test de la carte
Le test est effectué en deux étapes
- Configurez le logiciel PowerSDR, Spark, Kiss Konsole ou Quisk selon les paramètres ci-dessous
- Lancez le logiciel et balayez les fréquences de 100 kHz à 38 MHz. On entend la commutation des relais à chaque saut de bande (12/10 mètres, 17/15 mètres, 60/40 mètres, 80 mètres, 160 mètres. Le relais passe-haut « bande 7 » commute en dessous de 160 mètres. - Pour les plus consciencieux, branchez un analyseur entre l’entrée « High-TX » et la sortie RF Output et lancez un balayage à chaque changement de bande.
Les deux spectrogrammes suivants donnent la forme du filtre passe-bas avec ou sans l’insertion du filtre passe-haut « bande 7 ».
Chargement du gateware/test général
to be done