Difference between revisions of "Projets:Lab:2011:SA-Scotty"

From Electrolab
Jump to: navigation, search
(Opération dans la bande 2-3GHz)
(Architecture)
Line 36: Line 36:
  
 
[schéma]
 
[schéma]
 +
[[File:Blkdiagmsa.gif|200px|thumb|left|alt text]]
  
 
== Fonctionnement du MSA ==
 
== Fonctionnement du MSA ==

Revision as of 19:14, 30 November 2011

Analyseur de spectre et VNA 0-3GHz

Introduction

Plusieurs sympathisants de l'Electrolab ont porté de l'intérêt au projet de Scotty Sprowls visant à développer un analyseur de spectre modulaire. Ce projet, entièrement open source tant sur le plan hardware que software, a attiré l'attention du tout nouveau groupe d'intérêt "Radiofréquences" de l'association. Il a donc été décidé de construire un ou plusieurs de ces appareils essentiellement pour les raisons suivantes :

  • Ajouter un équipement performant et maintenable au laboratoire
  • Apprendre en faisant
  • Apporter support et contributions à ce beau projet

En effet, après réalisation du premier exemplaire, la volonté est de poursuivre l'aventure en faisant évoluer le design, bien évidemment, toujours de manière libre.

Les informations étant pour le moins éparses sur le sujet (mais nombreuses), ces pages se veulent aussi à la fois un recueil et un point de repère pour toute personne ayant la volonté de se lancer dans l'aventure.

Descriptif

La description originale de Scotty Sprowls est visible, sur le web, à cette adresse : http://www.scottyspectrumanalyzer.com/

Démarré en janvier 2001, c'est bien entendu un projet qui a beaucoup évolué avec le temps. D'un analyseur de spectre relativement rudimentaire 0-1GHz dans ses premières versions, c'est devenu au fil de temps un bel appareil 0-3GHz, avec générateur de tracking intégré, et la fonction d'analyseur de réseaux vectoriel.

La raison de cette vigoureuse évolution du projet est une conception extrêmement modulaire dès les toutes premières versions. Aujourd'hui, il s'agit d'une vingtaine de circuits imprimés au fonctions très distinctes. Il a donc été facile aux divers contributeurs d'améliorer telle ou telle fonction en modifiant (voire en reconcevant) tel ou tel circuit.

Il faut noter ici que Scotty n'a jamais commercialisé aucune version de son design, pas même sous forme de kit de PCB ou de de composants. La description est donc bien uniquement une description au sens où les schémas, fichiers de routage, et descriptifs de mise au point de chaque carte constituant l'appareil sont disponibles et en libre accès.

Pour illustrer l'aspect très modulaire du "Scotty", on peut voir que différents niveaux de "finition" sont possibles :

  • Basique : c'est un "noyau" permettant d'extension aux niveaux suivants. Il s'agit de l'analyseur de spectre fonctionnant en trois gammes : 0-1GHz, 1-2GHz, et 2-3GHz (voire plus haut si l'on utilise un mélange harmonique)
  • Niveau 2 : Ajout du générateur de tracking (avec des fonctions plutôt plaisantes comme la possibilité d'introduire un offset de fréquence entre la fréquence générée et celle d'analyse). On peut, à ce stade, effectuer de l'analyse de réseaux scalaire (pas d'information de phase). Un outil logiciel permettant de faire de l'analyse de quartz est disponible.
  • Niveau 3 : Ajout de la fonction d'analyse vectorielle de réseaux (VNA). Il s'agit d'ajouter l'information de phase à l'appareil niveau 2. Les possibilités sont gigantesques, et de nombreux outils logiciels permettent de faciliter la vie de tout électronicien (mesure d'impédance, analyse de filtres, mesure de composant, conversion de modèles série / parallèle, mesure de caractéristiques de lignes de transmission, analyse d'antenne...).

Bien entendu, l'appareil auquel nous nous intéressons est celui répondant à l'éventail de besoins le plus large. Toutes les considérations qui viennent ci-après concernent donc un appareil "niveau 3".

La dynamique de l'analyseur de spectre modulaire (MSA) dépend du filtre de résolution utilisé. Avec un filtre de 2kHz, la dynamique est de l'ordre de 100dB. En mode vectoriel, la mesure de phase est valide sur une dynamique de l'ordre de 90dB.

Architecture

Le schéma d'architecture présenté ci-dessous est celui d'un appareil "niveau 3", avec la fonction VNA.

[schéma]

alt text

Fonctionnement du MSA

Configuration commune à toutes les bandes (0-1, 1-2 et 2-3GHz)

Un double changement de fréquence est utilisé pour minimiser la génération de signaux parasites. Une FI finale de 10.7MHz est choisie pour pouvoir profiter des filtres standards disponibles dans le commerce. Le détecteur d'amplitude est un détecteur logarithmique ayant une dynamique de 100dB. Le signal qui en est issu est numérisé par un convertisseur 16 bits.

Il y a donc deux oscillateurs locaux (LO1 et LO2), pilotant les deux mélangeurs (Mixer 1 et Mixer 2). LO1 est un synthétiseur hybride (verrouillage de phase classique dont la référence est générée par une sythèse numérique directe -cartes PLO1 et DDS1-). LO2 dispose simplement d'un verrouillage de phase et génère une fréquence fixe de 1024MHz. Un oscillateur maître à 64MHz est utilisé comme référence.

Une carte de contrôle interface le MSA avec le port parallèle d'un PC.

Opération dans la bande 0-1GHz

La gamme de fréquence d'entrée du MSA est 0-1000MHz, et l'entrée est J2 de Mixer 1. L'oscillateur PLO1 balaye en fréquence entre 1013.3 et 2013.3MHz. Il est utilisé pour effectuer un changement de fréquence supradyne. La sortie de MIXER1 est sélectionnée à 1013.3MHz à l'aide d'un filtre à cavité coaxiale pour assurer la réjection d'image. Sa sortie est mélangée dans MIXER2 avec le signal issu de PLO2 à 1024MHz. La fréquence FI finale est donc de 10,7MHz.

Cette FI est amplifiée et filtrée en passant dans le filtre de résolution sélectionné par l'utilisateur.

L'amplitude du signal FI, image du signal d'entrée, est convertie en tension DC par un détecteur logarithmique intégré. Cette tension, homogène à une amplitude en dB, est numérisée par un convertisseur, puis la valeur sous forme digitale est transmise au PC via la carte de contrôle.

Opération dans la bande 2-3GHz

Les signaux dans la bande 2000-3000MHz sont appliqués à l'entrée de MIXER1. PLO1 balaye en fréquence entre 986.7MHz et 2986.7MHz. On utilise donc pour cette bande le produit de mélange infradyne de MIXER1. A la sortie de MIXER1, La fréquence à analyser est sélectionner à 1013.3MHz avec le même filtre à cavité coaxiale de manière à rejeter les fréquences images. Sa sortie est mélangée avec PLO2 à une fréquence fixe de 1024MHz afin de produire l'ultime fréquence FI à 10.7MHz.

    L'entrée de MIXER1 a des performances dégradées pour des fréquence
    supérieures à 1000MHz. Bien que système puisse fonctionner ainsi, de
    meilleurs résultats sont obtenus en inversant les ports IN et OUT de
    MIXER1. L'entrée du MSA devient J3, et la première FI sort sur J2.

Opération dans la bande 1-2GHz

Pour cette bande, la structure du MSA est modifiés pour ne plus avoir qu'un seul changement de fréquence.

PLO1 balaye en fréquence entre 1010.7MHz et 2010.7MHz. Ce signal d'OL est utilisé sur MIXER1 pour effectuer un mélange supradyne. La FI à 10.7MHs est directement issue de MIXER1, et est simplement passée dans un filtre passe-bas. Après amplification le signal traverse alors le filtre de résolution sélectionné.

    Là encore, comme pour la bande 2-3GHz, de meilleurs résultats sont obtenus
    en retournant les ports in et out de MIXER1.
    Le principe de ce simple changement de fréquence (simple hétérodyne) ne permet
    pas la réjection d'image effectuée pour les autres bandes avec le filtre à cavité
    coaxiale. Ceci signifie que MIXER1 va produire la même conversion à 10.7MHz pour
    les fréquences dans la bande 1021.4 à 2041.4MHz... Les signaux d'entrée peuvent
    donc être à la fois à 10.7MHz SOUS LO1, et 10.7MHz SUR LO1.

Le MSA avec générateur de tracking

L'analyseur de réseaux vectoriel

Analyse du système

Gain

Bilan des puissances :

  • MIXER1 : -6.5dB
  • Cavité coaxiale : -7dB
  • MIXER2 : -6.5dB
  • Ampli FI : +40dB
  • Filtre de résolution : # -4dB pour bande passante de 2.2kHz.

Total : +16dB

Bien entendu, ce n'est qu'un ordre de grandeur... Les sources de dispersions sont nombreuses, en particulier au niveau des filtres homemade (filtre de résolution et cavité).

Sensibilité

Puissance d'entrée maximale

Dynamique

Niveau de bruit

Réalisation

Validation

Ressources