Projets:Lab:2011:Picastar

From Electrolab
Revision as of 17:52, 13 December 2013 by Marc (Talk | contribs)

Jump to: navigation, search
deux superbes Picastar construits par G4LFU, le plus petit des deux utilisant un couple de cartes Combo P1(cliquez sur la photo pour agrandir)
Un impressionnant travail de tôlerie signé DK5NOA (carte combo)(cliquez sur la photo pour agrandir)

Picastar

Programmable Intelligent Computer Software Transmitter And Receiver


Le Picastar est un émetteur-récepteur de type « firmware defined radio » conçu par Peter Rhodes G3XJP. En d’autres termes une radio logicielle autonome, non liée à un ordinateur.

Son architecture est très semblable à celle d’un transceiver conventionnel, c’est-à-dire récepteur superhétérodyne (changement de fréquence aux environs de 10 MHz), amplification du signal après mélange par un étage « fréquence intermédiaire » précédé d’un filtre de toiture (comparable au principe du K3 Elecraft), chaine d’émission relativement classique reposant notamment sur un amplificateur linéaire de 150 W. On retrouve également dans le Picastar les traditionnels étages de filtrage, un présélecteur « passe-bande » à la réception, un filtre passe-bas en sortie d’ampli à l’émission.

Là s’arrête la comparaison. Toute la partie modulation/démodulation est assurée par une chaine de traitement numérique (DSP et Codec). L’ensemble des commandes est assuré par un processeur central Atmel ATMega 2560. La quasi-totalité des actuateurs situées en façade de l’appareil est paramétrable par l’usager, les interfaces possibles (affichage, clavier de commande, codeurs rotatifs) sont également à géométrie variable, laissées à la seule appréciation de celui qui construit « son » Picastar : écran couleur TFT de 5 pouces de diagonale ou afficheur LCD 4x20, clavier 4x5 ou/et encodeurs multiples... au fur et à mesure de son évolution, le Picastar, à l’instar des développements logiciels, a connu de nombreuses variations ou « fork ». A partir d’un tronc matériel et logiciel commun, il est possible de changer certains étages si l’on souhaite des performances plus élevées, des puissances différentes, une interface plus ou moins sophistiquée. La BOM (liste des composants) mesure 1500 composants au garot, certains d'entre eux comptant 80 points de soudure. Cet inventaire ne comprend pas les composants nécessaires à la construction des amplis HF, du filtre passe-bas, du Rosmètre, de l'afficheur couleur tactile, et d'extensions secondaires telles qu'un afficheur de spectre/waterfall. Le cap des 2000 composants, en majorité à montage de surface, est allègrement atteint.

En conséquence de quoi, le Picastar se définit lui-même par la formule « This is not a kit ». Attendez-vous donc à ce que le travail de montage et de paramétrage ne soit pas toujours d’une simplicité évidente. Le Picastar se mérite et résiste parfois très fort. Sa construction comporte quelques obstacles, mais rien qu’il ne soit possible de venir à bout.

  Note importante : Cela va sans dire, mais cela va mieux en le disant (dix ans et demi maximum), s'il n'est 
  en aucun cas interdit de construire un émetteur-récepteur en France, la loi conditionne son utilisation au passage
  d'un examen donnant droit à l'obtention d'une licence d'émission. L'Electrolab en général et 
  l'auteur en particulier déclinent toute responsabilité sur les conséquences d'un non-respect de ces obligations légales


L'électronique du Picastar, documentations officielles

L'un des Picastar de l'Electrolab en cours de montage(cliquez sur la photo pour agrandir)
Même réalisation, coté verso. Les deux cartes sont fixées sur une plaque séparatrice commune(cliquez sur la photo pour agrandir)

On compte au moins 6 générations différentes de Picastar depuis la naissance du projet. Ces 6 générations ont toutes été documentées par l'auteur et par d'autres participants, documentations qui se sont peu à peu déposées en strates puis fossilisés sur les différents sites Web. L'évolution technique du projet a fait que bon nombre de ces documentations sont totalement dépassées, voir erronées. Il est donc nécessaire de se concentrer sur les seules indications techniques suivantes.

Les participants du projet Picastar de l’Electrolab ont tous opté pour les circuits imprimés dessinés par Glenn VK3PE en date de septembre 2013. Plus précisément de la version Portable Combo P2 (combo 2A pour l'un des participants). Une page Web lui est consacrée

http://www.carnut.info/singleboard/Ver_Porta_P1/Porta_Combo_P1.htm

La liste des composants, ou BOM, au format Excel, peut être téléchargée à l’adresse suivante

http://www.carnut.info/singleboard/Ver_Porta_P1/BOM/BOM_Vers_P1_COMBO_4_080213.xls

Les plans détaillés de cette version du Picastar

http://www.carnut.info/singleboard/Ver_Porta_P1/Schematics/Combo-STAR_P1-P2_Schematics_updated_170713.pdf

Enfin, il est absolument obligatoire de se plonger dans la documentation originelle du Picastar, rédigée par G3XJP

http://www.tracey.org/wjt/temp/picastar-all.pdf

Attention : cette documentation n’est pas à prendre au pied de la lettre. Elle ne concerne que la toute première édition du Picastar datant de 2007, en version « 100% Home Made », pcb y compris. Depuis, plusieurs étages ont été totalement révisés et modifiés, notamment celui qui contient le processeur central : un Atmel a remplacé le PIC des anciennes époques (d’où le Picastar tire son nom), le filtre de bande a été légèrement modifié, ainsi que l’étage Fréquence Intermédiaire, l’amplificateur audio… Mais l’architecture générale et les principes de modulation/démodulation n’ont pas changé d’un iota.

Il est pratiquement impossible de construire un Picastar si l’on n’a pas lu et compris, au moins dans les grandes lignes, cette description technique.

Le logiciel du Picastar, documentations officielles

L'un des nombreux écrans du logiciels HobCat(cliquez sur la photo pour agrandir)

La configuration et le pilotage du Picastar sont assurés par un logiciel unique fonctionnant sous Windows : Hobcat. Il permet à la fois de :

  • configurer le firmware et les fonctions du Picastar
  • monitorer l'activité du transceiver durant son utilisation (un peu à la manière de HamRadioDeluxe)
  • de contrôler -piloter à distance- tous les élément de l'appareil depuis un ordinateur.

Ce dialogue passe par un raccordement de l'appareil via une prise USB. Un site a entièrement été consacré à la carte processeur TRXAVRb

http://www.homebrew-radios.net/trxavr_picastar/trxavr_picastar.htm

et au logiciels Hobcat

http://www.homebrew-radios.net/trxavr_picastar/hobcat/hobcat_main.htm

La totalité des indications traitant de l'injection du firmware dans les microcontrôleurs se trouve sur ce site.

Les modules complémentaires « quasi officiels »

Les circuits imprimés de Glenn comprennent des étages qui n’ont pas été conçus par Peter G3XJP :

  • Deux amplificateurs HF (un premier de 20 W PEP, un second de 150 W PEP) dessinés par G6ALU, d’après notamment une note d’application de Motorola
  • Un filtre passe-bas de puissance calculé et dessiné par G4TZR

La documentation relative au filtre passe bas de G4TZR se trouve sur le site de G6ALU

http://www.radio-kits.co.uk/radio-related/G4TZR_LPF/G4TZR_LPF.htm

un document spécifique est consacré à l’amplificateur 20 W

http://www.radio-kits.co.uk/radio-related/20W_PA/20W_HF_PA_Construction_V2-1.pdf

et l’amplificateur 150 W est décrit sur

http://www.radio-kits.co.uk/radio-related/150W_PA/150w_PA.htm

Un circuit imprimé manque à l’appel : celui qui pilotera l’afficheur couleur 5 pouces 420x272. Ce pcb a été conçu et dessiné par Gerard Sexton VK3GRS.Il a été baptise

TFTa

Glenn VK3PE lui a consacré une page spécifique

http://www.carnut.info/tftpcb/tft.htm

les schémas, la BOM, les conseils de montage sont à récupérer dans la section « fichiers » de la ML Yahoo group qui lui est consacré (voir ci-après). Ce pcb est revendu par Gérard au prix de 15 Dollars Australiens la paire. Si l’on se frotte pour la première fois aux montages à composants CMS, il est chaudement conseillé de commencer par le Picastar avant que de s’attaquer au TFTa : ce circuit imprimé compte deux intégrés assez denses (boitiers QFN 80 broches au pas de 0,5 mil), un connecteur pour câble en nappe franchement miniature, et des passifs au format 0603, donc de taille assez réduite. L’usage de la loupe binoculaire est vivement conseillé.

Les groupes Yahoo indispensables

Avant de débuter la brasure de la première résistance, il est pratiquement indispensable d’être inscrit sur les quatre mailing listes suivantes :

Picaproject

http://uk.groups.yahoo.com/group/picaproject/

Aucune activité notable sur cette liste. Mais il est impossible de s’inscrire sur la suivante si l’on fait l’impasse. La section « fichiers » contient notamment le manuel d’utilisation du Star (qui est loin d’être trivial). Ces documents datent de 2008.

Picastar Users

http://groups.yahoo.com/neo/groups/picastar-users/

C’est là la mailing list « officielle » réunissant les personnes engagées dans la réalisation d’un Picastar. On y parle essentiellement des plans de G3XJP, à l’exclusion de tout autre montage. Le filtre passe-bas, les amplis, le contrôleur d’affichage de l’écran TFT sont autant de sujet qui ne doivent pas être abordés pour d’évidentes raisons de clarté des échanges

Homebrew radios

http://groups.yahoo.com/neo/groups/homebrew-radios/

Ici, l’on parle de tout ce qui n’est pas directement lié aux travaux de G3XJP, à savoir le filtre passe-bas, les amplis de G6ALU, le contrôleur TFTa, les interconnexions entre le Picastar et les programmes de pilotage externes (HamRadio Deluxe par exemple), ainsi que de certaines variantes « non officielles » du code originel.

TFTa_Central

http://groups.yahoo.com/neo/groups/TftA_Central/info

mailing list exclusivement dédiée à l’afficheur TFT, à sa carte d’interface et à ses différentes utilisation possibles, dans le cadre ou non du Picastar (cet écran étant un simple terminal I2C « intelligent », et donc adaptable à tout dispositif d’affichage).

Les extensions matérielles « voisines » non officielles

Outre les amplificateurs, le filtre passe-bas et l’écran TFT, d’autres pans du Picastar peuvent « forker » dans le but d’améliorer encore ses performances.

Le filtre passe-bande PA3AKE

L’un des étages du Picastar, baptisé « I2C 16 Output relay driver » peut piloter un ou plusieurs filtres de bande externes. Le BPF de prédilection est celui de PA3AKE.

http://martein.home.xs4all.nl/pa3ake/hmode/index.html

il s’agit d’un filtre haut de gamme, très performant mais présentant deux inconvénients : - la taille de l’étage, relativement « conséquente », implique que le boitier devant contenir le Picastar devra être prévu en conséquence. - Le coût, ensuite, car le filtre de PA3AKE utilise des tores de taille imposante (T80 notamment), des condensateurs à Q élevé qui coûtent, selon les distributeurs, entre 1 et 2 euros pièce ainsi qu’une profusion de relais électromécaniques dont le prix alourdit d’autant la facture finale. Les performances sont à la hauteur de l’investissement. Cependant, une telle réalisation n’est véritablement avantageuse que si l’on possède l’instrumentation nécessaire au réglage de l’ensemble (analyseur de spectre avec générateur de suivi, au minimum, analyseur vectoriel au mieux)

En tout état de cause, une lecture attentive des notes de PA3KE

http://martein.home.xs4all.nl/pa3ake/hmode/bpf_all.html

montre à quel point il est possible d’obtenir des réponses de filtre exceptionnelles. Chaque filtre de bande est conçu pour offrir une réjection de la fréquence image (harmonique 2) supérieure à 130 dB.

Une page « Picastar » est consacré à cette modification et indique de quelle manière paramétrer le firmware du transceiver pour piloter le filtre en question

http://www.homebrew-radios.net/trxavr_picastar/I2C/PA3AKE.htm

Peuvent également se substituer aux étages originaux du Star le mélangeur en H de PA3AKE

http://martein.home.xs4all.nl/pa3ake/hmode/hmode_mixer.html

ainsi que le filtre de toiture, totalement réalisé à grands renforts de composants discrets

http://martein.home.xs4all.nl/pa3ake/hmode/roofer_intro.html

En poussant cette logique à l’extrême, cela revient à dire qu’il est possible de construire un récepteur PA3AKE piloté grâce au processeur et firmware TRXAVR. Il ne reste plus grand-chose du Picastar original.

Cette liste de liens ne serait pas complète si l’on omettait les pages fort-bien documentées et illustrées de Franck F1SSF

http://dubuf.free.fr/F1SSF1/crbst_43.html

Le filtre de puissance

Actuellement constitué d’un simple « passe-bas » du septième ordre, le filtre de sortie situé en amont de l’amplificateur HF peut avantageusement être remplacé par un filtre passe-bande de puissance. Certains de ces filtres peuvent même être laissés en circuit durant la réception pour améliorer le filtrage, ceci bien entendu en fonction de l’influence des pertes d’insertion qu'il pourrait apporter.

L’un des filtres les plus performants et répandu est le fameux W3NQN (Ed Wetherhold)

http://www.bavarian-contest-club.de/projects/bandpassfilter/100W-BP.pdf

On peut aussi envisager l’elliptique du cinquième ordre avec diplexeur/réjecteur de WB6DHW

http://www.wb6dhw.com/KWDiplexer.html

(ce dernier ne possède aucune section de commutation à relais, celle-ci devra être conçue à part, et sera pilotée avec les sorties de l’étage « I2C 12 Output »)

Les composants spécifiques

Le Picastar, amplificateurs et affichage TFT compris, est un projet de 2000 composants, en majorité à montage de surface, certains d’entre eux comptant plus de 80 pinuches à souder. Il est donc nécessaire de posséder l’équipement technique nécessaire (fer à souder « pointe fine » ou Minivague Weller, loupe forte ou binoculaire sur bras de déport, fil d’étain de petit diamètre, flux liquide en quantité, alcool isopropylique pour nettoyer, pinces précelle, tresse à dessouder).

La grande majorité de ces composants peut être achetée soit auprès des revendeurs traditionnels (RadioSpare, Farnell, Mouser, Digikey etc), soit sur eBay. Certains composants très spécifiques feront l’objet de commandes de groupe, ainsi les condensateurs au mica argenté ou porcelaine (Rota Franco, RF-Extra).

A ceci, il faut ajouter

  • L’écran TFT tactile se trouve sans grande difficulté auprès de plusieurs revendeurs Chinois sur eBay (aux environs de 18 dollars port compris). Un stock de revente a été constitué par l’Electrolab.
  • Un filtre à quartz 8 poles de 7 kHz de bande passante (+/-3,5 kHz) avec une fréquence centrale située entre 9 et 11 kHz. Son approvisionnement demande un peu de patience. Les prix se situent, pour des pièces de récupération, entre 7 et 15 euros pièce. Un membre de l’Electrolab en possède quelques-uns « au cas ou ». Attention, l’empreinte (footprint) de ce composant est réduite. Tous les filtres à quartz 10,7 MHz 7 kHz ne peuvent pas nécessairement convenir sans un pcb d’adaptation.
  • Un quartz dont la fréquence sera précisément 15 kHz plus haute que la fréquence centrale du filtre à quartz (un OM Chinois vend très régulièrement des quartz de 10,715MHz)
  • Un OCXO de qualité. Ces oscillateurs asservis en températures offrent une stabilité et un bruit de phase excessivement faible. Ce composant remplace avantageusement le Buttler original, plus compliqué à monter et faire démarrer. Tout autre oscillateur fixe de qualité situé entre 100 et 500 MHz pourra convenir. A noter que le DDS utilisé intègre un multiplicateur x4 ou x5, qui autorise l’utilisation de sources de fréquences plus basses (ainsi un 80 MHz multiplié par 5 fournira le 400 MHz nécessaire pour piloter le DDS). Composant relativement coûteux. Un membre de l’Electrolab en possède quelques-uns « au cas ou ».
  • Le codec utilisé par l’étage DSP est techniquement dépassé et n’est plus vendu dans les circuits traditionnels. Il appartenait à la génération des cartes son génération Windows XP. L’Electrolab en possède une dizaine, il est encore possible de s’en procurer sur eBay
  • Quatre transistors Jfet ref. J310 appariés. Un membre de l’Electrolab en possède quelques-uns triés pour l’occasion.
  • De la tôle étamée de 6/10eme pour réaliser sur mesure les nombreux blindages qui séparent les différents étages (ainsi qu’une bonne plieuse)
  • Un encodeur optique de qualité (bouton « vfo »). Environ 30 $ port compris sur eBay, origine Agilent ou Bourns. Ne pas envisager de remplacer ce composant par un encodeur mécanique à faible coût

Cette liste sera mise à jour et entretenue au fur et à mesure que le premier exemplaire du Picastar sera construit

Réalisation

Le "VFO" du Picastar : De gauche à droite, le filtre de sortie du DDS et sa commutation, l'amplification par MMIC (non monté), le DDS Analog Device et sa cellule de filtrage, et l'OCXO de pilotage situé à coté de son régulateur de tension "fortement" refroidi par un L d'alu de 4 mm d'épaisseur. A l'extrême droite, l'étage "16 I/O" de commutation des filtres externes(cliquez sur la photo pour agrandir)

Ce qui suit regroupe les conseils et remarques (corrections de bug, variation par rapport au projet originel etc)

On y trouvera la signalisation des erreurs constatées par l'auteur ou par Glenn, les suggestions des différents participants au projet

Glenn a rédigé une page de conseils avisés

http://www.carnut.info/singleboard/Ver_B/BUILD_NOTES/combo-build-sequence.htm

Bien que reposant sur une édition ancienne du Star (le « porta combo » ), ces instructions sont en grande partie applicables à la version P2.

 A ce jour, deux bugs seulement ont été repérés sur le pcb "combo P2" : 
 - Ne pas installer, dans la section F.I., les résistances du diviseur 
   R625 et R626 (près de IC604). La polarisation à "tiers de tension"
   est effectuée par RZ7/RZ8. Modification de M0RJD 
   (voir les notes de ses modifications sur son site)
   
 - La broche 16 du connecteur JT6 (TRXAVR) est isolée. Router un petit fil
   pour la relier à la masse, ou prélever la masse sur la pin 1. Cette 
   modification n'importe que si l'on souhaite utiliser un afficheur LCD.
   
   A noter que les PCB de génération P2A corrigent cet oubli


Progression de montage

Le plus simple est de monter, dans un premier temps, la totalité des composants passifs. Puis les connecteurs divers (jacks, HE10/KK, USB…), les cavaliers, puis enfin les régulateurs de tension. Cette méthode permet d’éliminer tous les doutes concernant les tensions de service, puisqu’il sera possible de mesurer tous les points de contrôle sans craindre de griller un actif. Une fois ces doutes levés, on peut alors passer à l’installation, étage après étage, des composants actifs, transistors et circuits intégrés. Ceci dans l’ordre que l’on souhaite, bien qu’il soit conseillé de débuter avec l’amplificateur BF, le filtre de bande, les drivers de commutation (carte I/O, timer…), le DSP, puis la F.I.

Les blindages peuvent être installés après la phase d’installation des passifs s’ils ne sont pas prévus trop hauts.

Pour des raisons de hauteur "hors tout" de certains composants (selfs, capas variables notamment), les blindages coté composants peuvent difficilement être d'une hauteur inférieure à 18 mm (exception faite du blindage du BPF qui doit être plus "haut")

Les blindages coté piste doivent mesurer 6 mm environ (hauteur qui dépend de celles des entretoises de fixation que vous emploierez). Ces 6 mm sont conditionnés par la hauteur de tête des vis et écrous servant à supporter l'autre PCB du coté opposé de la plaque de séparation/blindage.


Modification de l’étage d’adaptation d’impédance du filtre à quartz

Le filtre à quartz 10M4D ou le filtre d’origine ITT utilisé dans le schéma original du Picastar ne sont pas des composants faciles à se procurer. L’on est donc en général contraint d’utiliser ce qui nous tombe sous la main, tant que le filtre se situe sur une fréquence proche de 10,7 MHz et que sa bande passante se situe entre 7 et 8 kHz.

Mais « n’importe quoi » aura très peu de chances de présenter une impédance identique à celle du 10M4D. Les circuits L/C d’entrée et de sortie sont donc à modifier en conséquence. C’est ce que nous avons notamment dû faire pour les filtres Hi-Q qui présentent une impédance très élevée (3,3 kOhms,) comparée à celle du filtre d’origine (900 kOhms).

Pour ce qui concerne le circuit d’entrée, la question ne se pose pratiquement pas : il suffit d’installer le filtre à quartz sur un « dut holder » adéquat, d’en extraire les paramètres S à l’aide d’un analyseur vectoriel et de calculer les valeurs de L et C soit en utilisant les extensions logicielles de l’analyseur, soit en utilisant le fichier Touchstone avec un logiciel de simulation spice. L’impédance d’entrée théorique est de 50 Ohms en entrée de la cellule de filtrage.

- Oui, mais si j’ai pas d’analyseur vectoriel ? - Y’en a un à l’Electrolab - Je suis loin de l’Electrolab - Il y a nécessairement un radioamateur qui en possède un dans un rayon de 30 km autour de chez toi - J’habite au fond à gauche du désert de Gobi - Dans ce cas, il ne te reste plus que la solution de l’estimation pifométrique après simulation, et un réglage du filtre à l’aide d’un géné HF et d’une mesure du maxi d’amplitude de signal en sortie (ou d’un analyseur de spectre logiciel suivi d’un convertisseur)… mais sans analyseur, aucune chance d’éliminer les traces de « ringing » et de restreindre les pertes d’insertion au mieux.

Le circuit de sortie, en revanche, n’est pas d’une simplicité évidente. Il est constitué d’une cellule L/C, mais la composante L est prolongé d’une bobine d’arrêt HF, et sert de circuit de polarisation/blocage aux diodes de commutation D607/D608/D609 et alimentation du transistor J310 d’amplification.

Un condensateur de blocage CC (C12x) coupe toute composante continue susceptible de remonter vers le filtre à quartz.

La résistance R605, de 560 Ohms, présente une charge adaptée à l’impédance du FET. C’est donc à cette impédance que doit « sortir » la cellule d’adaptation, et non sur un 50 Ohms « universel et théorique ». Cette impédance a été déterminée par G3GXP au moment de la conception de cet étage.

Il faut donc passer d’une impédance de (par exemple) 3,3k à 560 Ohms. Le rapport de transformation de TR601 est déterminé par la racine carrée du rapport de transformation (puisque l’impédance d’un tore progresse au carré du nombre de tour)

Dans notre cas, ce rapport sera égale à la racine de 3300/560 , soit 2,4275.

L’on choisit alors une inductance capable de résonner sur cette fréquence (10,7) et présentant la capacitance la plus élevée possible. Conservons la self d’origine qui comporte 34 tours. 34/2,4275=14. La prise de sortie sera situé sur la 14 eme spire côté « froid »(donc à 20 spires du point chaud situé à la jonction du condensateur variable)

Le réglage des CV s’achèvera par une mesure de la courbe du filtre à l’analyseur vectoriel ou à l’analyseur scalaire.