Difference between revisions of "Projets:Lab:2011:SA-Scotty"

From Electrolab
Jump to: navigation, search
m
 
(197 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 +
Page référencée dans Passion : <br>
 +
Radio[[Passion:Radio| Radios logicielles, transmissions numériques, expérimentations HF]]<br>
 +
 
'''Analyseur de spectre et VNA 0-3GHz'''
 
'''Analyseur de spectre et VNA 0-3GHz'''
 +
 +
[[File:Ensemble.JPG|600px|thumb|Les principaux éléments de l'analyseur (cliquez sur la photo pour agrandir)]]
 +
[[File:Rack.JPG|600px|thumb|Le premier MSA opérationnel du groupe de montage Electrolab réalisé par Michel F1CHM (cliquez sur la photo pour agrandir)]]
  
 
= Introduction =
 
= Introduction =
Line 14: Line 20:
 
La description originale de Scotty Sprowls est visible, sur le web, à cette adresse :
 
La description originale de Scotty Sprowls est visible, sur le web, à cette adresse :
 
http://www.scottyspectrumanalyzer.com/
 
http://www.scottyspectrumanalyzer.com/
 +
 +
Un groupe de discusion Yahoo sert de lien à la communauté anglophone intéressée par ce projet
 +
http://groups.yahoo.com/group/spectrumanalyzer/
 +
 +
De manière très sommaire, cet instrument peut être décrit comme une "interface de mesure". Pour fonctionner, il doit être associé à un microordinateur, lequel se charge à la fois du pilotage des différentes sections de l'appareil ainsi que de l'affichage des mesures effectuées. La liaison entre l'interface et l'ordinateur s'effectue soit via le port parallèle,soit via une interface USB. Le logiciel de pilotage a été conçu en Basic sous Windows, et un portage en Python [http://sourceforge.net/projects/msapy/ est disponible sous Google Code].
  
 
Démarré en janvier 2001, c'est bien entendu un projet qui a beaucoup évolué avec le temps. D'un analyseur de spectre relativement rudimentaire 0-1GHz dans ses premières versions, c'est devenu au fil de temps un bel appareil 0-3GHz, avec générateur de tracking intégré, et la fonction d'analyseur de réseaux vectoriel.
 
Démarré en janvier 2001, c'est bien entendu un projet qui a beaucoup évolué avec le temps. D'un analyseur de spectre relativement rudimentaire 0-1GHz dans ses premières versions, c'est devenu au fil de temps un bel appareil 0-3GHz, avec générateur de tracking intégré, et la fonction d'analyseur de réseaux vectoriel.
 +
 +
[[File:P3040052.jpg|center]]
 +
<center>A titre d'exemple, le MSA de Bob Fish, K6GGO.</center>
 +
  
 
La raison de cette vigoureuse évolution du projet est une conception extrêmement modulaire dès les toutes premières versions. Aujourd'hui, il s'agit d'une vingtaine de circuits imprimés aux fonctions très distinctes. Il a donc été facile aux divers contributeurs d'améliorer telle ou telle fonction en modifiant (voire en reconcevant) tel ou tel circuit.
 
La raison de cette vigoureuse évolution du projet est une conception extrêmement modulaire dès les toutes premières versions. Aujourd'hui, il s'agit d'une vingtaine de circuits imprimés aux fonctions très distinctes. Il a donc été facile aux divers contributeurs d'améliorer telle ou telle fonction en modifiant (voire en reconcevant) tel ou tel circuit.
Line 32: Line 47:
 
La dynamique de l'analyseur de spectre modulaire (MSA) dépend du filtre de résolution utilisé. Avec un filtre de 2kHz, la dynamique est de l'ordre de 100dB. En mode vectoriel, la mesure de phase est valide sur une dynamique de l'ordre de 90dB.
 
La dynamique de l'analyseur de spectre modulaire (MSA) dépend du filtre de résolution utilisé. Avec un filtre de 2kHz, la dynamique est de l'ordre de 100dB. En mode vectoriel, la mesure de phase est valide sur une dynamique de l'ordre de 90dB.
  
 
+
= Specifications du MSA : =
== Specifications du MSA (version de base) ==
+
== Version de base ==
  
 
Système à double changement de fréquence. Première F.I. à 1013,3 MHz, seconde F.I. à 10.7 MHz.
 
Système à double changement de fréquence. Première F.I. à 1013,3 MHz, seconde F.I. à 10.7 MHz.
Line 59: Line 74:
 
Puissance Max du signal HF d’entrée = +13 dBm; DC= 20 ma
 
Puissance Max du signal HF d’entrée = +13 dBm; DC= 20 ma
  
Nombre de modules SLIM :11, et un filtre à cavités coaxiales
+
Nombre de modules SLIM : 11, et un filtre à cavités coaxiales
  
Coût $300 à $500, selon options. Bien inférieur avec une « boite à çà peut servir » bien remplie
+
'''Coût $300 à $500, selon options. Bien inférieur avec une « boite à çà peut servir » bien remplie'''
  
 
== Specifications du générateur de tracking MSA/TG ==
 
== Specifications du générateur de tracking MSA/TG ==
Line 75: Line 90:
 
Nombre de modules SLIM  3 qui s’ajoutent au MSA « version de base »
 
Nombre de modules SLIM  3 qui s’ajoutent au MSA « version de base »
  
Coût $85 à $100, selon options
+
'''Coût $85 à $100, selon options'''
 
+
  
 
== Specifications de l’extension Analyseur Vectoriel (VNA), MSA/TG/VNA ==
 
== Specifications de l’extension Analyseur Vectoriel (VNA), MSA/TG/VNA ==
Line 88: Line 102:
 
Nombre de modules SLIM  2 qui s’ajoutent au MSA /TG
 
Nombre de modules SLIM  2 qui s’ajoutent au MSA /TG
  
Coût $16 à $25, selon options
+
'''Coût $16 à $25, selon options'''
  
= Architecture =
+
= Les différents éléments nécessaires et coûts réels =
Le schéma d'architecture présenté ci-dessous est celui d'un appareil "niveau 3", avec la fonction VNA.
+
  
[[File:Blkdiagmsa.gif]]
+
Le principal avantage du « Scotty » est d’être modulaire. Tant mécaniquement et électroniquement que financièrement. En d’autres termes, rien n’interdit à un amateur de se lancer dans la fabrication d’un MSA et de limiter ses achats à « un module par mois » ou moins. Dans sa version la plus minimaliste (analyseur 1 GHz, sans générateur de tracking ni analyseur vectoriel), Scotty a estimé (voir [http://www.scottyspectrumanalyzer.com/msaslim.html#Cost_of_the_MSA_using_SLIMs son tableau] ) que la dépense minimale était de 241 dollars, soit 180 euros. En d’autres termes, le prix moyen d’un module est de 16 euros, il y en a 11, ce qui veut dire qu’en commençant tout de suite, le père noël vous apportera votre MSA pour l’hiver 2012 et la facture aura été indolore.
  
 +
Mais ce calcul est légèrement biaisé et l’étalement des dépenses un peu plus complexe.
  
  
 +
<center>'''La page [[Projets:Lab:2011:SA-Scotty:Parts|"Différents éléments et coût réel"]] fait le point à ce sujet.'''</center>
  
== Fonctionnement du MSA ==
+
= Fonctionnement du MSA =
=== Configuration commune à toutes les bandes (0-1, 1-2 et 2-3GHz) ===
+
Un double changement de fréquence est utilisé pour minimiser la génération de signaux parasites. Une FI finale de 10.7MHz est choisie pour pouvoir profiter des filtres standards disponibles dans le commerce. Le détecteur d'amplitude est un détecteur logarithmique ayant une dynamique de 100dB. Le signal qui en est issu est numérisé par un convertisseur 16 bits.
+
  
Il y a donc deux oscillateurs locaux (LO1 et LO2), pilotant les deux mélangeurs (Mixer 1 et Mixer 2). LO1 est un synthétiseur hybride (verrouillage de phase classique dont la référence est générée par une sythèse numérique directe -cartes PLO1 et DDS1-).
 
LO2 dispose simplement d'un verrouillage de phase et génère une fréquence fixe de 1024MHz. Un oscillateur maître à 64MHz est utilisé comme référence.
 
  
Une carte de contrôle interface le MSA avec le port parallèle d'un PC.
+
Selon la gamme de fréquence, les MSA ne fonctionne pas de manière identique. Pour les bandes 0-1GHz et 2-3GHz, on dispose d'une architecture à double changement de fréquence. Pour la bande 1-2GHz, en revanche, seul un changement de fréquence simple est mis en œuvre.
  
=== Opération dans la bande 0-1GHz ===
+
La FI finale est à 10.7MHz. Cette valeur a été choisie afin de pouvoir profiter des filtres standards disponibles dans le commerce. Le détecteur d'amplitude utilisé est un détecteur logarithmique ayant une dynamique de 100dB, et le signal qui en est issu est numérisé par un convertisseur 16 bits.
La gamme de fréquence d'entrée du MSA est 0-1000MHz, et l'entrée est J2 de Mixer 1. L'oscillateur PLO1 balaye en fréquence entre 1013.3 et 2013.3MHz. Il est utilisé pour effectuer un changement de fréquence supradyne. La sortie de MIXER1 est sélectionnée à 1013.3MHz à l'aide d'un filtre à cavité coaxiale pour assurer la réjection d'image. Sa sortie est mélangée dans MIXER2 avec le signal issu de PLO2 à 1024MHz. La fréquence FI finale est donc de 10,7MHz.
+
  
Cette FI est amplifiée et filtrée en passant dans le filtre de résolution sélectionné par l'utilisateur.
 
  
L'amplitude du signal FI, image du signal d'entrée, est convertie en tension DC par un détecteur logarithmique intégré. Cette tension, homogène à une amplitude en dB, est numérisée par un convertisseur, puis la valeur sous forme digitale est transmise au PC via la carte de contrôle.
+
<center>'''La page [[Projets:Lab:2011:SA-Scotty:MSA Diagram|"Fonctionnement du MSA"]] détaille ces paramètres.'''</center>
 
+
=== Opération dans la bande 2-3GHz ===
+
Les signaux dans la bande 2000-3000MHz sont appliqués à l'entrée de MIXER1. PLO1 balaye en fréquence entre 986.7MHz et 1986.7MHz. On utilise donc pour cette bande le produit de mélange infradyne de MIXER1.
+
A la sortie de MIXER1, La fréquence à analyser est sélectionner à 1013.3MHz avec le même filtre à cavité coaxiale de manière à rejeter les fréquences images. Sa sortie est mélangée avec PLO2 à une fréquence fixe de 1024MHz afin de produire l'ultime fréquence FI à 10.7MHz.
+
 
+
    L'entrée de MIXER1 a des performances dégradées pour des fréquence
+
    supérieures à 1000MHz. Bien que système puisse fonctionner ainsi, de
+
    meilleurs résultats sont obtenus en inversant les ports IN et OUT de
+
    MIXER1. L'entrée du MSA devient J3, et la première FI sort sur J2.
+
 
+
=== Opération dans la bande 1-2GHz ===
+
Pour cette bande, la structure du MSA est modifiés pour ne plus avoir qu'un seul changement de fréquence.
+
 
+
PLO1 balaye en fréquence entre 1010.7MHz et 2010.7MHz. Ce signal d'OL est utilisé sur MIXER1 pour effectuer un mélange supradyne. La FI à 10.7MHs est directement issue de MIXER1, et est simplement passée dans un filtre passe-bas. Après amplification le signal traverse alors le filtre de résolution sélectionné.
+
 
+
    Là encore, comme pour la bande 2-3GHz, de meilleurs résultats sont obtenus
+
    en retournant les ports in et out de MIXER1.
+
 
+
    Le principe de ce simple changement de fréquence (simple hétérodyne) ne permet
+
    pas la réjection d'image effectuée pour les autres bandes avec le filtre à cavité
+
    coaxiale. Ceci signifie que MIXER1 va produire la même conversion à 10.7MHz pour
+
    les fréquences dans la bande 1021.4 à 2041.4MHz... Les signaux d'entrée peuvent
+
    donc être à la fois à 10.7MHz SOUS LO1, et 10.7MHz SUR LO1.
+
 
+
== Le MSA avec générateur de tracking ==
+
 
+
== L'analyseur de réseaux vectoriel ==
+
  
 
= Analyse du système =
 
= Analyse du système =
Line 180: Line 162:
  
 
       Les essais réels montrent des résultats bien meilleurs, notamment  
 
       Les essais réels montrent des résultats bien meilleurs, notamment  
       pour la dynamique en mode VNA. Les opérations de calibration permettent
+
       pour la dynamique en mode VNA. Les opérations d'étalonnage permettent
 
       de travailler bien au-delà des spécifications de l'AD8306.
 
       de travailler bien au-delà des spécifications de l'AD8306.
  
Line 195: Line 177:
 
If the 2.2 KHz Final Xtal Filter is replaced with a 15 KHz bandwidth filter, the noise floor will increase.  The total noise at the input to the Log Det will be:  Total noise = -174dBm +3dB(amp noise figure) +20dB +20dB +10logBW(15KHz) -4dB(filt loss) = -89.2 dBm.  This total noise level is .8 dB greater than the -90 dBm noise floor of the Log Detector.  Therefore, the circuitry in front of the Log Detector Module determines the MSA input noise floor, not the Log Detector. Using the MSA Gain figure of 16 dB, the minimum signal level at the input to the MSA is now -105.2 dBm.  Therefore, the Dynamic Range of the MSA with the 15 KHz filter is 99.2 dB (-105.2 dBm to -6 dBm)."
 
If the 2.2 KHz Final Xtal Filter is replaced with a 15 KHz bandwidth filter, the noise floor will increase.  The total noise at the input to the Log Det will be:  Total noise = -174dBm +3dB(amp noise figure) +20dB +20dB +10logBW(15KHz) -4dB(filt loss) = -89.2 dBm.  This total noise level is .8 dB greater than the -90 dBm noise floor of the Log Detector.  Therefore, the circuitry in front of the Log Detector Module determines the MSA input noise floor, not the Log Detector. Using the MSA Gain figure of 16 dB, the minimum signal level at the input to the MSA is now -105.2 dBm.  Therefore, the Dynamic Range of the MSA with the 15 KHz filter is 99.2 dB (-105.2 dBm to -6 dBm)."
  
=Description technique des modules MSA=
+
= Construction du MSA =
 +
Le MSA est conçu pour être construit selon une chronologie bien établie. En la respectant, non seulement les chances d'arriver au bout du projet augmentent drastiquement, mais en plus, les problèmes de test et de mise au point sont grandement simplifiés.
  
==SLIM-CB-NV rev C Carte de Commande==
 
  
 +
L'ordre de construction est le suivant :
  
'''SLIM-CB-NV, Carte de commande, taille C'''
+
* '''Note de montage importante''' : [[Projets:Lab:2011:SA-Scotty:Alim_ADC_PDM|A lire avant montage des SLIM ADC et PDM]]
 +
*Carte d'interface : [[Projets:Lab:2011:SA-Scotty:SLIM-CB-NV|SLIM-CB-NV]]
 +
*Détecteur de phase : [[Projets:Lab:2011:SA-Scotty:SLIM-PDM|SLIM-PDM]] (pour l'extension VNA -> réalisé pour la gestion des alimentation, mais ne sera testé qu'à la toute fin...)
 +
*Convertisseur analogique / numérique 16bits : [[Projets:Lab:2011:SA-Scotty:SLIM-ADC-16|SLIM-ADC-16]]
 +
*Carte de commutation vidéo[[Projets:Lab:2011:SA-Scotty:video-switch| Prototype]]
 +
*Détecteur logarithmique : [[Projets:Lab:2011:SA-Scotty:SLIM-LD-8306|SLIM-LD-8306]]
 +
*Oscillateur principal : [[Projets:Lab:2011:SA-Scotty:SLIM-MO-64|SLIM-MO-64]]
 +
*Oscillateur DDS 1 : [[Projets:Lab:2011:SA-Scotty:SLIM-DDS-107|SLIM-DDS-107]] (et module DDS 3 identique pour le générateur de tracking)
 +
*[[Projets:Lab:2011:SA-Scotty:CrystalFilters|Filtres à quartz de résolution]]
 +
*Mélangeur 2 : [[Projets:Lab:2011:SA-Scotty:SLIM-MXR-2|SLIM-MXR-2]]
 +
*Mélangeur 1 : [[Projets:Lab:2011:SA-Scotty:SLIM-MXR-1|SLIM-MXR-1]]
 +
*Mélangeur 3 : [[Projets:Lab:2011:SA-Scotty:SLIM-MXR-3|SLIM-MXR-3]] (pour le générateur de tracking)
 +
*Mélangeur 4 : [[Projets:Lab:2011:SA-Scotty:SLIM-MXR-4|SLIM-MXR-4]] (pour l'extension VNA)
 +
*Oscillateur PLL 2 : [[Projets:Lab:2011:SA-Scotty:SLIM-PLO-2|SLIM-PLO-2]]
 +
*Oscillateur PLL 1 : [[Projets:Lab:2011:SA-Scotty:SLIM-PLO-1|SLIM-PLO-1]] (et PLL 3 identique pour le générateur de tracking)
 +
*[[Projets:Lab:2011:SA-Scotty:CoaxialCavityFilter|Filtre à cavités et filtre SAW]] ***
 +
*Amplificateur FI : [[Projets:Lab:2011:SA-Scotty:SLIM-IFA-33|SLIM-IFA-33]]
  
Avec votre souris, effectuez un “clic droit” et sélectionnez “enregistrez la cible sous… » pour télécharger la version la plus récente:
 
  
a.[http://www.scottyspectrumanalyzer.com/slim/expressfiles/skslim_cb_nv.sch SKSLIM-CB-NV.sch rev C], Schémas de la carte de commande SLIM, format ExpressPCB.
+
'''Modules optionnels (hors pcb BG6KHC)'''
  
b. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/pwb_cb_nv.pcb PWB-CB-NV.pcb rev C], Dessin du PCB au format ExpressPCB. Utilisez ce tracé si vous souhaitez passer commande auprès de PCB Express, où pour repérer l’emplacement des composants sur la carte de commande SLIM.
+
*Ampli HF VNA : [[Projets:Lab:2011:SA-Scotty:SLIM-RFA-1 Rev 0|SLIM-RFA-1 Rev 0]]
 +
*Commutateur de filtre : [[Projets:Lab:2011:SA-Scotty:SLIM-2P4T|SLIM-2P4T]]
 +
*Commutateur de filtrage "video" [[Projets:Lab:2011:SA-Scotty:SLIM-videofilter|SLIM-VideoFilter]]
 +
*Amplificateur à gain variable F.I. pour le détecteur log [[Projets:Lab:2011:Expanded-log-amp|ampli-log]]
 +
*Duplexeur/commutateur 1-3G/2G[[Projets:Lab:2011:Diplexeur| Duplexeur]]
 +
*Platine de commande des relais coaxiaux d'entrée (fwd/Rev et Trans/Refl) [[Projets:Lab:2011:Commutation| Commutation]] ('''''article en cours de rédaction''''')
  
c. [http://www.scottyspectrumanalyzer.com/slim/plslim_cb_nv.txt PLSLIM-CB-NV.txt rev C] , Liste des composants de la carte de commande SLIM au format .txt. Ouvrir avec un tableur (Exel, LibreOffice etc).
 
  
La carte de commande SLIM-CB-NV est l’interface entre l’ordinateur et les autres cartes SLIM. Elle est constitué de 4 sections : les « Latch » -commutation-, la régulation/distribution de tensions d’alimentation, un convertisseur de tension et un filtre de bruit.
+
Pour chacun de ces modules, la page associée rassemble '''Quatre sections''' :
  
Revision C et dernières modifications en date depuis le 20-01-2009
+
*'''Description technique :'''
  
La “Rev C” se limite à l’ajout des resistances R13 à R24, et des condensateurs C29 à C40 par rapport au design original. Ces résistances/capacités forment un filtre passe-bas quui améliore l’immunité au bruit provenant du port LPT de l’ordinateur. Ce qui a nécessité une modification du PCB. Cette modification peut être réalisée sur les anciennes cartes si jugé nécessaire, notamment is l’on constate des problèmes d’émission de commandes provenant de l’ordinateur.
+
Ce chapitre explique comment fonctionne le module, son rôle au sein du MSA (MSA « de base », TG ou VNA), la nature des signaux entrant et sortants, la manière dont le signal affecte le comportement du module et la manière dont le module transforme le signal. Ce chapitre est systématiquement accompagné du schéma électronique du module SLIM considéré. Certain chapitres descriptifs sont accompagnés d’instruction de montage sortant du cadre des « modifications » et servant essentiellement à optimiser le comportement du module.  
  
schéma, SK-CB-NV rev C
+
Le début de chaque chapitre comporte les liens externes pointant sur la BOM (Bill of material, liste des composants du module), un dessin du PCB servant au repérage des composants en cours de montage, et un fichier au format Express-PCB pouvant servir à la commande de circuits imprimés auprès de ce sous-traitant. Il est à noter que le programme Express-PCB est totalement propriétaire, qu’il ne délivre aucun fichier Gerber et oblige ses utilisateurs à employer les services de l’entreprise en question (société située aux USA).  Il est toutefois possible d’effectuer des sorties imprimante des circuits pour en tirer directement des transparents à l’échelle 1 si l’on ne souhaite pas reprendre le « cuivre » avec un outil CAO plus sérieux.
  
'''Section commutation'''
 
[[File:Skslim_cb_nv1.gif]]
 
  
+
*'''Instructions de construction :'''
La section Latch (commutation) utilise 4 buffers "latchés", dont les entrées sonc compatibles avec les niveaux TTL/CMOS et les sorties au niveau CMOS. Les entrées recoivent les signaux provenant du port imprimante de l’ordinateur via un connecteur femelle DB-25. Les sorties latchées sont disponibles sur 5 rangées de broches de 9 pin chacunes. L’utilisation de broches HE10 n’est pas obligatoire, l’on peut, accesoirement, opter pour un câblage « direct ». Un cinquième connecteur (P5) est directement relié au connecteur LPT et peut être « lu » par l’ordinateur. Deux de ses contacts sont utilisés par le convertisseur Analogique/Numérique du SLIM (''ndt : Ack et Wait''), les deux autres, PE et Select, sont réservés pour un usage futur et non utilisés dans la version actuelle du projet.
+
La “Rev B” ajoute une 2.2 K ohm en pull-up sur les broches de ce connecteur P5 pour compenser l’absence de ce meme pull-up sur les sorties de certains ordinateurs. Comme PE et Select ne sont pas utilisés, seules les lignes WAIT et ACK risquent d’avoir besoin de ces résistances (''ndt : économie de bout de chandelle''). Pour savoir si ces resistances sont nécessaires, mesurez avec un voltmètre la tension entre GND et les broches 10 à 13 de la sortie imprimante de l’ordinateur. La valeur mesurée doit être plus grande que +2V. Dans le cas contraire, les résistances sont nécessaires.
+
  
Les 4 CI de commutation sont activés par les données provenant du port parallèle de l’ordinateur. Les données aiguillées sur les sorties lorsque la ligne de commande « enable » est à l’état haut. Si « enable » est maintenu à l’état haut, les données en sortie sont le reflet de celle injectées en entrée. Lorsque la ligne « enable » est à l’état bas, les données sont bloquées.
 
La carte de commande SLIM est un module générique qui s’intègre dans un plus grand ensemble de modules. C’est la raison pour laquelle les signaux portent également des noms génériques. Par exemple, le signal de données sortant de l’ordinateur est appelé D0. Il est bufferisé par les 4 latch, U1 à U4 Les noms changent à la sortie de chaque latch. Par exemple, P1D0, qui désigne le bit de données 0 du connecteur P1 (sortie de U1).
 
  
Une fois intégrée dans le montage général, des noms plus explicites sont assignés à chaque signal.
+
Il s'agit ici d'aborder les considérations et modifications que l’on doit apporter aux SLIM lors de leur intégration au sein d’une architecture MSA.  Lors de l’intégration et de la construction de votre MSA, nous vous conseillons d’imprimer cette documentation. Créez-vous un dossier avec le diagramme général, le plan de disposition des modules, le schéma de câblage général ainsi que tous les schémas de chaque SLIL (les possesseurs de « tablet » et « pen computers » seront privilégiés). Ceci fait, je vous conseille d’annoter au feutre rouge  chaque mise à jour de la documentation ou noter vos modifications réalisées en fonction des instructions « spéciales » qui vont suivre. De cette manière, vous constituerez un document que vous pourrez conserver et qui retracera l’historique de votre système, lequel sera fort utile lors de l’intégration de nouveaux modules ou de modifications de design dans le futur. Et puis... Ce document sera également indispensable pour pouvoir trouver de l'aide en cas de problème. A toute question, on vous demandera invariablement « Quelle est votre configuration de MSA ? » Or une image (celle de votre « cahier de montage » scanné) vaut un million de mots.  
  
'''Section Alimentation,'''
 
[[File:Skslim_cb_nv2.gif]]
 
 
La section Alimentation reçoit une tension nominal située entre  +12 volts et +13.6 volts et génère une tension de +10 volts distribuée sur plusieurs connecteurs à deux broches servant à alimenter les différents modules SLIMs.  Le courant max autorisé est de 1 amp. D1 est une diode de protection. Si l’entrée de l’alimentation est court-circuitée en cours d’utilisation, D2 protègera U5 contre toute destruction. FB1 et FB2 font peut de chose en terme de filtrage. Ils sont ici surtout pour servir de fusible en cas d’inversion de polarité. U5 (note du traducteur : si l’on utilise le pcb “Scotty” et non celui de bg6khc) est monté coté “cuivre”, sous le PCB, afin d’utiliser le boitier métallique de l’analyseur en guise de radiateur. Depuis la “Rev B”, il est possible d’utiliser une tension d’entrée de  +12v à +15v. Toutefois, une tension d’alimentation supérieure, pouvant aller jusqu’à +20 Volts est envisageable, a condition d’utiliser impérativement le circuits intégré de conversion CC/CC prévu à l’origine (TC7662B, voir feuille N° 4).
 
  
Depuis la “Rev B”, un connecteur P25 a été ajouté pour fournir une tension directe au convertisseur de tension (voir schéma feuille 4). Cette option accroit la tension de sortie initialement de 20 volt à environ 26 volts. Cette modification est optionnelle, et les possesseurs d’anciennes carte SLIM ne sont pas obligés de modifier leur montage.
+
*'''Instructions de validation :'''
La “Rev B” utilise désormais des capas10 uF/35v non polarisées (céramiques) en lieu et place des condensateurs chimiques prévus d’origine. Cette modification est optionnelle mais recommandée pour toute fabrication nouvelle.
+
  
'''Section convertisseur de tension'''
+
[[File:Skslim_cb_nv3.gif]]
+
Egalement intitulé « Test Unitaire », ce chapitre est une procédure de test pas à pas de vérification du bon fonctionnement des modules un à un. En règle générale, la procédure débute par une vérification des relevés statiques de tension importants, check liste généralement suivie par un test « en condition » des fonctions dynamiques (HF).  
+
Rev B : La section Convertisseur de tension contient… un convertisseur de tension (sic). La version précédente du MSA en comportait 2, mais il est apparu qu’un seul circuit fournissait la tension nécessaire à la fois pour le MSA et le générateur de tracking.
+
Le convertisseur de tension est entièrement entouré d’une piste de mise à la masse. Un blindage périphérique et son couvercle peuvent être soudés et installés à cet endroit afin de bloquer toute émission de bruit. Cependant, après des séries de tests intensifs, il n’a pas été prouvé que cette partie rayonnait le moins du monde. Les connexions CC sont accessibles sous le PCB, via un connecteur 3 broches (''ndt : version de pcb Scotty, ne concerne pas franchement la version bg6khc, sauf si l’on installe le blindage mentionné''). Si l’on n’envisage pas d’utiliser cette section, il n’est pas nécessaire d’y installer les composants. Le SLIM MSA / Générateur de Tracking n’a pas besoin de -10 V. C18 et C19 peuvent être ommises.
+
La “Rev B” donne je choix entre 5 options dans la section Convertisseur de tension.
+
  
1. Option 1, utiliser le LMC7660, avec une entrée en 10 v input. Sortie nominale de +19 volts.
 
Le convertisseur reçoit une tension de +10 volts de la section Alimentation et la convertie en +19 et -10 V. Elle peut fournir 20 mA sur chaque sortie. Le MSA/TG (générateur de tracking) consommé un total de 7 mA sous+19 volts. Le -10 volts n’est pas utilisé, et C18 et C19 peuvent être omises. La sortie montre une légère ondulation résiduelle à la fréquence de travail du LMC7660 (8.5 KHz).
 
  
2. Option 2, Utiliser le TC7662 avec une tension d’entrée de 10 V. La tension nominale de sortie sera de +19V. Avec la broche 1 de U7 connectée à Vcc, l’ondulation résiduelle est à envionr 30 kHz. Aucune mesure précise n’a été faite, mais le niveau de bruit devrait être plus bas. A cette fréquence, il est possible que le montage rayonne un peu et nécessite l’installation du blindage.
+
*'''Platine bg6khc : '''
  
3. Option 3, Utiliser le TC7662, avec une tension d’entrée de 10 v. La tension nominale de sortie sera de +19V. Avec la broche 1 de U7 déconnectée de Vcc (il faut couper la piste), la fréquence de l’ondulation résiduelle est à 10 kHz. Configuration non testée mais devant présenter les mêmes résultats que l’option 1.
 
  
4 Option 4, Utiliser le TC7662, avec une tension d’entrée de 13.6 v. La tension nominale de sortie sera de +26 volts. Avec la broche 1 de U7 connectée à Vcc, l’ondulation résiduelle est à environ 30 kHz. Aucune mesure précise n’a été faite, mais le niveau de bruit devrait être plus bas. A cette fréquence, il est possible que le montage rayonne un peu et nécessite l’installation du blindage.
+
Comme son nom l'indique, cette section est spécifique aux détails de montage, modifications, adaptation et différences des circuits imprimés vendus par Yanjun Ma BG6KHC. Chaque chapitre contient au moins une photographie haute définition du module construit
  
5 Option 5, Utiliser TC7662, avec une tension d’entrée de 13.6 V. La tension nominale de sortie sera de +26 volts. Avec la broche 1 de U7 déconnectée de Vcc (il faut couper la piste), la fréquence de l’ondulation résiduelle est à 10 kHz. Configuration non testée mais devant présenter les mêmes résultats que l’option 1.
 
Les variantes des options 2 à 4 peuvent être expérimentées dans cette configuration. Avec une tension d’au moins 21 volts, le MSA aura une plage de fréquence opérationnelle de 1200 MHz.
 
  
Modification le la carte SLIM-CB-NV-Rev A
+
Le MSA s’utilise lui-même pour se tester et se calibrer. Chaque chapitre débute donc par les instructions de raccordement des différents modules à raccorder. '''L’ordre de test est donc très important''', puisqu’il est impossible de tester un module avec d’autres modules qui n’ont pas encore été testés et validés.
  
Les anciennes cartes SLIM-CB-NV-Rev A utilisant le PCB PWB-CB-NV Rev 0, doivent être modifiées. En utilisant les schémas ci-dessus comme guide, les composants suivants doivent êre ajoutés : R6, C23, R7, C24, R8, C25. Le second convertisseur de tension doit être enlever pour faire un peu de place et pouvoir ajouter les resistances et condensateurs mentionnés (ce réseau de filtrager peut égalemnet être ajouté à l’extérieur de la carte). Cette modifictaion est nécessaire pour diminuer le bruit sur les deux lignes 10 V et la sortie 20.
 
  
'''Section Filtre de Bruit'''
+
'''Cet ordre est le suivant :'''
  
[[File:Skslim_cb_nv4.gif]]
+
*Carte de Commande
+
*Convertisseur A/N
Le filtre de bruit, (N) comprend un filtre céramique Murata d’une fréquence centrale de 10,7 MHz et d’une bande passante de 150 kHz. Le circuit intègre également un réseau de conversion d’impédance de 50 à 330 Ohms. La perte d’insertion est approximativement de -4.5 dB. Cette section est entièrement blidée pour l’isoler des bruits provenant de l’extérieur. Les connexions HF sont soudées coté « cuivre » (''ndt : version de pcb Scotty. Peut également concerner la version bg6khc, si l’on installe le blindage mentionné et si l’on prévoie des entretoises d’élévation de la platine Alimentation/filtre/convertisseur de tension assez hautes pour laisser la place à une paire de connecteurs SMA coudés. Attention à la hauteur « hors tout » de l’ensemble, le pcb de bg6khc étant prévu pour recevoir un radiateur assez imposant pour U5. Il serait plus sage de prévoir un blindage laissant passer le filetage de prises SMA droites''). Si le filtre n’est pas jugé utile, cette section n’a pas a être montée et le blindage n’est pas nécessaire, et la partie du PCB qui lui est consacrée peut être coupée. Si laissé en l’état, seules les deux blindages latéraux extérieurs devront être soudés sur la face « composant » (supérieure) du pcb
+
*Détecteur Logarithmique (préréglage grossier)
 +
*Maître Oscillateur
 +
*DDS 1
 +
*DDS 3 (extension générateur de Tracking)
 +
*Détecteur log (test final)
 +
*Filtre à quartz de résolution
 +
*Mélangeur 2
 +
*Mélangeur 1
 +
*Mélangeur 3 (extension générateur de Tracking)
 +
*Mélangeur 4 (extension VNA)
 +
*PLL, test préliminaire
 +
*PLL 2
 +
*PLL 1
 +
*PLL 3
 +
*PLL, réglage des fréquences et tests de puissance
 +
*Détecteur de phase
 +
*Filtre à cavité coaxiale
 +
*Amplificateur Fréquence Intermédiaire
  
Cette section « filtre » n’est pas utilisée ni requise pour le montage du SLIM MSA, avec ou sans le générateur de tracking ou l’extension Analyseur Vectoriel, et ne doit donc pas être peuplée de ses composants ''(ndt : après conversation avec Scotty, il semble que malgré tout ce filtre, qui appartient à la « genèse » du « poor man’s analyzer », soit utilisable. Il peut servir de « quatrième » filtre FI à condition d’en améliorer la pente, en optant pour un filtre à quarts miniature ou en cascadant deux filtres céramiques. Il est également possible de le dédier, tel que et sans modification, comme filtre FI en mode VNA –mode qui n’a absolument pas besoin d’une bande passante étroite ou d’un filtrage avec un Q élevé-. Il peut également servir de filtre « tout venant » durant les premiers essais et tests fonctionnels de l’appareil.)''
+
Pour des raisons de simplicité, les batteries de tests sont regroupés par famille de modules (DDS, mélangeurs, PLL etc). Le préréglage du détecteur log, par exemple, se trouve en fin de chapitre "Test Unitaire" du détecteur log, même si sa mise en oeuvre vient après les chapitres sur les DDS.
'''Dessin du pcb et placement des composants pour la carte de commande SLIM'''
+
  
[[File:Pwb_cb_nv.gif]]
+
  Un schéma de branchement situé en début de chapitre de test explique clairement
   
+
quel module doit être raccordé avec quel autre.  
La carte de commande est destinée à être montée de telle manière que le connecteur parallèle dépasse de la paroi du boitier, par le truchement d’une découpe au format DB25 taille « D » avec ses deux écrous de fixation et de sécurisation du câble de raccordement.  
+
  
 +
Outre le MSA lui-même, il est recommandé d’avoir sous la main une série d’atténuateurs (10, 20, 5 et 2 dB) ou un atténuateur  pas à pas capable de passer de 0 à 3 GHz, un voltmètre (3,5 digits conseillé) et un oscilloscope (entre 20 et 100 MHz de bande passante). Certains tests d’optimisation, tel que celui du détecteur logarithmique, peuvent être conduit si l’on possède un générateur de signal HF avec sortie variable (0/-100 dBm environ).
  
 +
Enfin, il est conseillé de se fabriquer un petit cordon en câble coaxial semi-rigide terminé par deux connecteurs mâle et possédant un condensateur de 100 nanofarads en série. Ce cordon spécial, baptisé « DC Block » au cours des différentes procédures de test, sert à couper la composante continue présente sur la sortie de certains modules et rendre compatible cette sortie avec des entrées qui sont galvaniquement mises à la masse (et qui provoqueraient donc un méchant court-circuit en cas de branchement irréfléchi). La poursuite de certains tests en l’absence de ce module « DC-Block » peut provoquer la destruction d’un des modules en cours de test.
  
== SLIM-MXR-1 rev A Mélangeur 1 ==
+
[[File:DC-Block.JPG|400px|center|thumb| un raccord "coupeur de composante continue" (Cliquez sur la photo pour l'agrandir)]]
  
'''SLIM-MXR-1, Mélangeur, PCB taille “A” & SLIM_MIXER_1 V2.2 bg6khc'''
+
La complexité extrême de ce montage électronique nous contraint d'ajouter le schéma, lequel nous a coûté de nombreuses heures de travail avec un outil de CAO de 5eme génération
  
Faites un « clic droit » avec votre souris et sélectionnez « Enregistrer la cible sous… » pour télécharger le fichier :
+
[[File:DC-Block_schema.JPG|400px|center|]]
a. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/skslim_mxr_1.sch SKSLIM-MXR-1.sch Rev A], Schémas, format ExpressPCB.
+
  
b. [http://www.example.com link title LAYSLIM-MXR-1.pcb Rev A], Dessin du circuit, format ExpressPCB. Utilisez ce fichier pour situer l’emplacement des composants. Ne surtout pas utiliser pour passer commande auprès d’ExpressPCB.
+
''Le schéma du "coupeur de composante continue" (le fait de cliquer pour l'agrandir ne le rendra pas plus compréhensible)''
  
c. [http://www.scottyspectrumanalyzer.com/slim/plslim_mxr_1.txt PLSLIM-MXR-1.txt Rev B], Liste des composants (BOM) format TXT.
+
Comme la vie, l'univers et tout le reste se résume à deux choses (le nombre 42 et l'art d'associer avec harmonie le genre masculin et le genre féminin), nous ne saurions trop conseiller de monter un DC-Block tel que celui illustré ci-dessus, c'est à dire constitué d'un tronçon de cable semi-rigide et de deux connecteurs. Il faut noter que tous les modules sont équipés de connecteurs femelle... pour intercaller un coupeur de composante continue entre deux modules, il faut qu'il soit lui-même doté de deux connecteurs, l'un mâle, l'autre femelle (ce qui n'est pas le cas de l'exemple ci-dessus). Un simple DC-Block fait avec deux prises SMA "chassis" serait bien plus simple à réaliser, mais nécessiterait à son tour deux adaptateurs mâle-mâle au moins d'un coté. Ce qui contribuerait à fausser certains calculs de pertes d'insertion, tout çà pour ajouter une capa ridicule.
  
d. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/pwb_mxr_ade.pcb PWB-MXR-ADE.pcb Rev 0] , Dessin du PCB, format software. Utilisez ce fichier pour passer commande auprès d’ExpressPCB. C’est là la configuration de base du design du SLIM-MXR-1.
+
= Mise au point et validation globale=
  
'''Le SLIM-MXR-1''' repose sur un composant Mini-Circuits ADE-11X. Ce mélangeur présente une bonne isolation uniquement sur les ports « L » et « R » (pin 3 à pin 6). Minicircuits la donne pour -38 dBc, mais elle est plus proche en réalité de -30 dBc ) 1000 MHz. Le constructeur estime les pertes de conversion à -7,5 dB. Je les ais mesurées à -6,5 dB. Je continue de recommander l’achat de ce mixer essentiellement en raison de son faible prix d’achat.
 
  
'''Améliorations possibles'''
+
William Sprowls a rédigé deux documents concernant l'étalonnage d'une part et le dépannage du MSA d'autre part. Dans un premier temps, seule la partie "validation" est en cours de traduction.
  
Atténuateur d’entrée optionnel
+
== Etalonnage du MSA ==
  
Bien que cela ne soit pas montré sur le schéma, un atténuateur peut être inséré sur l’entrée J2 pour que SLIM-MXR-1 présente une meilleure adaptation à 50 Ohms vis-à-vis des signaux extérieurs. R15 est remplacé par un atténuateur en Pi avec des valeurs de résistances présentant le facteur d’atténuation souhaité. Les résistances R11 (entrée du Pi, coté connecteur) et de sortie du Pi, R19 (coté mixer) ne sont pas montrées sur le schéma. Par exemple, un atténuateur 6 dB serait compose de R11=150 Ohms, R15=37,4 Ohms et R19=150 Ohms. Le calcul d’un atténuateur peut être grandement simplifié en utilisant le logiciel gratuit AADE Filter Design proposé par AADE (http://www.aade.com/filter.htm)[http://www.example.com link title]  
+
[[Projets:Lab:2011:SA-Scotty:Reglages&Calibration| '''Lien direct vers les instructions d'étalonnage''']]
  
'''SKSLIM-MXR-1, Schéma du SLIM-MXR-1'''
+
La section "Validation/Etalonnage" est à suivre pas à pas une fois que le montage électronique du MSA est achevé et que les "Tests unitaires" ont été couronnés de succès. Nous conseillons aux personnes ayant atteint ce stade de la réalisation de n'aborder ce chapitre qu'une fois le MSA assemblé dans son boitier ou rack définitif, avec un câblage refait "à neuf" proprement routé et fretté, les plans de masse vérifiés, les entrées et sorties coaxiale reliées avec des câbles montés "étanches à l'eau" (couple de serrage des prises SMA vérifié ou liaisons directes proprement soudées). Si ces prérequis ne sont pas respectés, les opérations de réglage ne pourront garantir des réultats de mesure reproductibles, fiables et précis.
  
[[File:Skslim_mxr_1.gif]]
+
Le texte original en Anglais est disponible à l'adresse http://www.scottyspectrumanalyzer.com/msasetcal.html
  
La résistance R15 est un court-circuit de zéro Ohms si l’on ne compte pas monter d’atténuateur. La valeur de C25 est basse pour ne laisser passage qu’aux fréquences hautes.
+
== Dépannage du MSA ==
  
'''LAYSLIM-MXR-1, Plan de localisation des composants et photo SLIM-MXR-1'''
+
La section dépannage - ou[http://www.scottyspectrumanalyzer.com/trouble.html "troubleshooting guide"]- demeure en anglais, la somme de travail nécessaire à sa traduction (et validation) ayant été jugée moins prioritaire que d'autres sections (manuels d'utilisation, procédure d'étalonnage finale etc). En cas de difficulté, n'hésitez surtout pas à vous inscrire sur la Mailing List de l'Electrolab pour demander de l'aide à l'un des membres de l'équipe.
  
[[File:Layslim_mxr_1.gif]][[File:Mixer1.jpg]]
+
= Mise en oeuvre et Exploitation =
 
+
Cette photo ne montre aucune “amélioration” autre que l’atténuateur d’entrée sur J1..
+
  
'''Modification optionnelle du port "R"'''
+
Cette section, probablement la plus importante de tout le Wiki, regroupe :
  
Une fois le MSA testé et son fonctionnement vérifié, l’utilisateur peut s’étonner que le rapport Gain/Fréquence marque un changement abrupt pour tout ce qui se situe en dessous de 400 MHz. Cela est dû au filtre à cavité d’entrée qui crée une désadaptation du premier mélangeur aux fréquences autres que celles préconisées pour la première fréquence intermédiaire (à 1013 MHz). La fréquence effective est dépendante de la longueur de la liaison coaxiale entre le premier mélangeur (port R, prise J3) et le filtre à cavités. Ce changement brutal n’affecte pas la précision du MSA. Cette désadaptation peut être atténuée avec une légère modification (optionnelle) du module SLIM-MXR-1. Elle consiste à ajouter une capa de 1 pf et une résistance de 50 Ohms toutes deux en série, entre le port R et la masse
+
* Une description très généraliste de l'interface d'utilisation du logiciel de pilotage du MSA (version [http://www.scottyspectrumanalyzer.com/control.html Anglaise], version [[Projets:Lab:2011:SA-Scotty:Interface| Française]])
  
1. Ajoutez une 1 pf à l’emplacement X26 (port « R » de l’ADE-11X, R pin 3).
+
Les différents manuels d'utilisation et de configuration rédigés par Sam Wetterlin et notamment :
2. Ajoutez une résistance de 49.9 Ohm à l’emplacement X27. La valeur n’est pas critique et peut varier de 43 à 62 Ohms.
+
Ces deux composants en série agissent comme une charge vis à vis du signal réfléchi provenant du filtre à cavités.
+
  
'''Implantation générale des composants sur la platine "Mixer 1"'''
+
* Introduction à l'analyse de spectre (Version [http://www.wetterlin.org/sam/SA/Operation/MSA_Walkthrough_SA.pdf Anglaise], Version [[Media:1-Le_logiciel_MSA_pas_à_pas_AS.pdf|Française]])
 +
* Introduction à l'analyse vectorielle (en mode transmission) (Version [http://www.wetterlin.org/sam/SA/Operation/MSA_Walkthrough_Transmission.pdf Anglaise], Version [[Media:2_-Le_logiciel_MSA_pas_à_pas_VNA_Transmission.pdf |Française]])
 +
* Introduction à l'analyse vectorielle (en mode réflexion) (Version [http://www.wetterlin.org/sam/SA/Operation/MSA_Walkthrough_Reflection.pdf Anglaise], Version [[Media:3_-Le_logiciel_MSA_pas_à_pas_VNA_Reflexion.pdf |Française]])
 +
* Guide d'utilisation de l'analyseur de spectre (Version [http://www.wetterlin.org/sam/SA/Operation/SA_Guide.pdf Anglaise], Version [[Media:Guide_d'utilisation_S_A.pdf|Française]])
 +
* Guide d'utilisation de l'analyseur vectoriel (Version [http://www.wetterlin.org/sam/SA/Operation/VNA_Guide.pdf Anglaise], Version [[Media:Guide_d'utilisation_VNA.pdf|Française]])
 +
* Comment utiliser le MSA en mode Analyseur vectoriel (Version [http://www.wetterlin.org/sam/SA/Operation/MSAasVNA.htm Anglaise], Version [[Media:tbd.pdf|Française]])
  
[[File:Pwb_mxr_ade.gif]]
+
::- calibres OSL et standards d'étalonnage (Version [http://www.wetterlin.org/sam/SA/Operation/CalStandards.zip Anglaise], Version [[Media:tbd.pdf|Française]])
  
(''ndt : a l’attention des utilisateurs des pcb de bg6khc, les atténuateurs d’entrée sur J2, tout comme le réseau R/C en sortie du port « R » peuvent être soudés sans le moindre problème, des réserves sur le plan de masse dans le « soldermask » ayant été prévues. Seul la cellule R/C demandera un peu plus de délicatesse pour relier les composants en série, aucun « ilot » intermédiaire de soudure n’ayant été envisagé'')
+
::- les ponts de mesure et de réflexion (Version [http://www.wetterlin.org/sam/SA/Operation/TestFixtures.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
+
::- les interfaces de test série (Version [http://www.wetterlin.org/sam/SA/Operation/Series_Fixture_OSL_Test.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
 +
::- les interfaces de test shunt (Version [http://www.wetterlin.org/sam/SA/Operation/ImpedMeasS21Shunt.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
 +
::- introduction aux mesure des paramètres S (Version [http://www.wetterlin.org/sam/SA/Operation/SParameters.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
== SLIM-MXR-2 rev B Mélangeur 2 avec Duplexeur ==
+
::- introduction à la lecture de l'abaque de Smith (Version [http://www.wetterlin.org/sam/SA/Operation/SmithChartIntro.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
'''SLIM-MXR-2, Mélangeur, PCB taille “A”'''
+
::- détermination de l'impédance caractéristique d'un DUT(Version [http://www.wetterlin.org/sam/SA/Operation/CharacteristicImpedance.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
'''& SLIM_MIXER_2 V2.2 bg6khc'''
+
  
Faites un « clic droit » avec votre souris et sélectionnez « Enregistrer la cible sous… » pour télécharger le fichier :
+
::- les stubs coaxiaux (Version [http://www.wetterlin.org/sam/SA/Operation/CoaxStubs.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
a. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/skslim_mxr_2.sch SKSLIM-MXR-2.sch Rev B], Schémas, format ExpressPCB.
+
::- les pertes dans les câbles coaxiaux (Version [http://www.wetterlin.org/sam/SA/Operation/S21TransLineLoss.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
b. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/layslim_mxr_2.pcb LAYSLIM-MXR-2.pcb Rev B], Dessin du circuit, format ExpressPCB. Utilisez ce fichier pour situer l’emplacement des composants. Ne surtout pas utiliser pour passer commande auprès de ExpressPCB.
+
::- l'analyse des filtres et des quartz (Version [http://www.wetterlin.org/sam/SA/Operation/FILTER%20ANALYSIS.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
c. [http://www.scottyspectrumanalyzer.com/slim/plslim_mxr_2.txt PLSLIM-MXR-2.txt Rev C], Liste des composants (BOM) format TXT.
+
* Comment mesurer des composants passifs RLC (Version [http://www.wetterlin.org/sam/SA/Operation/RLC_Analysis.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
 +
* Comment mesurer le Q des selfs et les composants à Q élevé (Version [http://www.wetterlin.org/sam/SA/Operation/Measurement_Inductor_Q.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
 +
* Comment adapter des filtres d'impédances différentes (Version [http://www.wetterlin.org/sam/SA/Operation/FilterMatching2.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
d. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/pwb_mxr_ade.pcb PWB-MXR-ADE.pcb Rev 0], Dessin du PCB, format software. Utilisez ce fichier pour passer commande auprès de ExpressPCB. C’est là la configuration de base du design du SLIM-MXR-1.
 
  
SLIM-MXR-2 a été conçu spécialement pour êter utilisé dans le MSA en fonction de sa position par rapport au premier mélangeur. J1 reçoit le signal de l’Oscillateur Local (PLO2), J3 est utilisé en port d’entrée, J2 est la sortie du downconverter en direction de l’étage F.I. . La broche 2 de l’ADE-11X est reliée au pont de diode interne, qui descend jusqu’à 0 Hz
+
Outre ces documents relatifs à l'utilisation de l'appareil, Sam Wetterlin a également publié plusieurs articles décrivant des "modules complémentaires" destinés à améliorer ou étendre les fonctions de l'analyseur. Et notamment :
Mini-Circuits estime les pertes de conversion à -7,5 dB. Je les ais mesurées à -6,5 dB.
+
  
C25 est une capa de faible valeur favorisant le passage uniquement des fréquences hautes. Le circuit bizarre sur le port « I » est un duplexeur. Le large spectre fréquences (et de bruit) sortant du mélangeur sur le port « I » « voient » un double chemin possible à la jonction de L15 et C16. Les fréquences supérieures à 33 MHz passent par C16 et se perdent dans la charge 50 Ohms R17. Les fréquences plus basses que 33 MHz passent par L15 et sont envoyées sur J2. Ce montage donne au mélangeur une impédance constante à 50 Ohms sur une large bande de fréquence. Ce duplexeur peut être recalculé pour n’importe quelle autre fréquence de coupure.  
+
* Un pont de mesure actif (Version [http://www.wetterlin.org/sam/SA/Operation/ActiveBridge.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
 +
* Un amplificateur de mesure/étage d'isolation (Version [http://www.wetterlin.org/sam/SA/Operation/BufferOpAmp.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
 +
* Une commande automatique de gain pour le MSA (Version [http://www.wetterlin.org/sam/SA/AGC/AGC_Loop_Modules.htm Anglaise], Version [[Media:tbd.pdf|Française]])
 +
* Un détecteur logarithmique amélioré (Version [http://www.wetterlin.org/sam/SA/ExpandedLogDetect/ExpandedLogDetector2.pdf Anglaise], Version [[Media:tbd.pdf|Française]])
  
'''Améliorations possibles'''  
+
  Ces documents représentent la somme des manuels d'utilisation et des protocoles de mesure d'un analyseur de spectre/TG/VNA
 +
  en général et du MSA en particulier. Ces documents peuvent être imprimés, reliés, et doivent cotôyer l'instrument,
 +
  au même titre que tous ses plans électroniques et notes de montage particulières.
 +
  Il s'agit là de la véritable documentation du MSA.
  
Revision B: Modifications successives depuis le 11-06-08 à nos jours
+
= Ressources =
Pour les SLIM-MXR-2 Rev B, SKSLIM-MXR-2 Rev B, PWB-MXR-ADE Rev 0, PLSLIM-MXR-2 Rev B
+
  
Depuis la version B, un atténuateur de 2,5 dB a été ajouté sur le port d’entrée O.L. (J1), ce qui améliore l’adaptation d’impédance sur 50 Ohms.
 
Ces modifications améliorent grandement l’isolation du mélangeur, mais rend nécessaire que le niveau de l’O.L. sur J1 soit d’environ +9,5 dBm. Pour utiliser ce module à puissance réduite (+7 dBm), l’atténuateur doit être supprimé. Cependant, j’ai testé ce module avec tout juste +4.5 dBm sur J1 (soit +2 dBm en entrée du port L de l’ADE-11X) avec un accroissement de seulement -1 dB de pertes de conversion.
 
  
1. Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur, pour améliorer l’isolation port à port de l’ ADE-11X et l’adaptation d’impédance vis à vis de l’O.L. sur J1
 
  
'''SKSLIM-MXR-2, Schéma du SLIM-MXR-2'''
+
==Articles de vulgarisation ==
  
[[File:Skslim_mxr_2.gif]]
+
'''En Français et avec une approche pédagogique remarquable''', les cours d'instrumentation, théorie de l'analyse de spectre de Jean Philippe Muller, du Lycée Louis Armand de Mulhouse. Cette série de cours (niveau BTS) porte sur une foultitude de sujets liés à la radioélectricité. Notamment :
+
  
'''LAYSLIM-MXR-2, Plan de repérage SLIM-MXR-2'''
+
- [http://www.louis-armand-mulhouse.eu/btsse/acrobat-modules/spectres.pdf Un module sur l'analyse spectrale]
  
[[File:Layslim_mxr_2.gif]][[File:Mixer2.jpg]]
+
- [http://www.louis-armand-mulhouse.eu/btsse/acrobat-cours/spectre.pdf Un cours sur l'architecture]et le principe de fonctionnement d'un A.S.
 
+
Cette photo a été prise avant l’ajout de l’atténuateur.
+
  
 +
- [http://www.youtube.com/user/jipehemphyap Une série de vidéo] très bien vulgarisées sur les lignes de transmission, les oscillateurs, les modulations (AM, FM), l'Histoire des télécoms
  
 +
Il est vivement recommandé de commencer la série en regardant [http://www.youtube.com/watch?v=COGz9a-UDy0&feature=plcp Les bases de l'analyse spectrale]  et [http://www.example.com Les applications de l'Analyse Spectrale]
  
== SLIM-MXR-3 rev A Mélangeur 3 ==
+
Il va sans dire que tous les autres modules et cours, accompagnés d'exercices théoriques, sont à lire sans retenue.
  
  
'''SLIM-MXR-3, Mélangeur, PCB taille “A”'''
+
'''Extension 12 GHz pour le MSA à 3 Euros''' : [http://f6cxo.pagesperso-orange.fr/cariboost_files/L_27analyseur_2012_20GHz_20pas_20cher.pdf Convertisseur de fréquence modifié par f6CXO ] à partir d'une tête de réception TV Sat [http://www.rfmicrowave.it/ita/catalog_view_item/0/5/1.html vendue par Rota Franco] pour une misère
'''& SLIM_MIXER_1 V2.2 bg6khc'''
+
  
Faites un « clic droit » avec votre souris et sélectionnez « Enregistrer la cible sous… » pour télécharger le fichier :
 
  
a. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/skslim_mxr_3.sch SKSLIM-MXR-3.sch Rev A ], Schémas, format ExpressPCB.
 
  
b. [file:///C:/My%20Documents/aWebPage/slim/expressfiles/skslim_mxr_3.sch LAYSLIM-MXR-3.pcb Rev A], Dessin du circuit, format ExpressPCB. Utilisez ce fichier pour situer l’emplacement des composants. Ne surtout pas utiliser pour passer commande auprès de ExpressPCB.
+
[[Conventions de langage]], jargon d'électronicien, expresions du domaine de la radio
  
c. [file:///C:/My%20Documents/aWebPage/slim/expressfiles/skslim_mxr_3.sch PLSLIM-MXR-3.txt Rev B], Liste des composants (BOM) format TXT.
 
  
d. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/pwb_mxr_ade.pcb PWB-MXR-ADE.pcb Rev 0], Dessin du PCB, format software. Utilisez ce fichier pour passer commande auprès de ExpressPCB. C’est là la configuration de base du design du SLIM-MXR-3.
+
[[Link Initiation aux boucles à verrouillage de phase destinée au débutants]]
  
Le SLIM-MXR-3 a été conçu pour être utilisé en troisième mélangeur dans la configuration MSA avec générateur de tracking (MSA/TG).C’est un clone du SLIM-MXR-1, qui repose sur le même schéma de principe et utilise les mêmes composants. Certaines améliorations et modifications ont justifié le fait que le SLIM-MXR-3 possède sa propre documentation.
 
J1 est le port d’entrée. J3 est utilisé comme port d’injection HF. J3 est la sortie du downconverter en direction de l’étage F.I.. En configuration MSA/TG, J2 est la sortie du générateur de Tracking, qui travaille de 0 à 1000 MHz. La broche 2 de l’ADE-11X est reliée au pont de diode interne, qui descend jusqu’à 0 Hz.
 
J1 doit recevoir un signal d’environ +10 dBm. J3 doit recevoir un signal d’environ +10 dBm également. Mini-Circuits
 
  
Mini-Circuits estime les pertes de conversion à -7,5 dB. Je les ais mesurées à -6,5 dB. Le niveau de sortie sur J2 doit être situé entre -10 dBm et -12 dBm. Je dois avertir le lecteur qu’en plus du signal 0-1000 MHz attend, il devra s’attendre à trouver tout un tas de produits de mélange.
+
[[Analyseur de Spectre, Analyseur Scalaire, Analyseur Vectoriel]]... qui fait quoi ?
  
  
'''Améliorations possibles'''
+
Fred PA4TIM a écrit 8 articles de vulgarisation plus particulièrement destinés aux possesseurs d'analyseurs vectoriels "VNWA" conçu par Tom DG8SAQ. Ce sont là 8 petits bijoux de simplicité, de pédagogie, qui n’exigent aucune connaissance particulière et ne font pas appel aux mathématiques.
  
Revision A: Modifications successives depuis le 11-06-08 à nos jours
+
Cette « introduction à l’usage pratique du VNA » doit être lue par tout jeune Padawan suivant le chemin des chevaliers Jedi de l’analyse, et ce quelle que soit son arme de prédilection : VNWA, MSA, N2PK ou superbe occase dénichée sur eBay.
  
Pour les SLIM-MXR-3 Rev A, SKSLIM-MXR-3 Rev A, PWB-MXR-ADE Rev 0, PLSLIM-MXR-3 Rev B
+
Une [[Projets:Lab:2015:Tuto_VNWA#Les_tutoriels_de_PA4TIM| série de pages spécifiques a été consacrée à ces tutoriels ]]  ainsi qu'à divers articles plus particulièrement destinés à l'usage du VNWA de DG8SAQ (ainsi qu'au N2PK avec le logiciel VNWA et MyVNA)
  
1. Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur, pour améliorer l’isolation port à port de l’ ADE-11X et l’adaptation d’impédance vis à vis de l’O.L. sur J1
 
2. Un atténuateur de 14 dB est installé sur l’entrée du port « R », pour améliorer la  l’isolation port à port de l’ ADE-11X et l’adaptation d’impédance de J3
 
3. Ajout d’une capa de 2 pf  entre la pin 3 du mélangeur et la masse (position C29). Ce circuit améliore d’adaptation de l’atténuateur 14 dB avec J3.
 
Ces modifications améliorent grandement l’isolation du mélangeur, mais rend nécessaire que le niveau de l’O.L. sur J1 soit d’environ +9,5 dBm. Pour utiliser ce module à puissance réduite (+7 dBm), l’atténuateur doit être supprimé. Cependant, j’ai testé ce module avec tout juste +4.5 dBm sur J1 (soit +2 dBm en entrée du port L de l’ADE-11X) avec un accroissement de seulement -1 dB de pertes de conversion.
 
 
'''SKSLIM-MXR-3, Schéma du SLIM-MXR-3'''
 
 
[[File:Skslim_mxr_3.gif ]]
 
 
 
La résistance R15 est un court-circuit de zéro Ohms si l’on ne compte pas monter d’atténuateur. La valeur de C25 est basse pour ne laisser passage qu’aux fréquences hautes.
 
 
'''LAYSLIM-MXR-3, Plan de repérage SLIM-MXR-3'''
 
 
[[File:Layslim_mxr_3.gif]][[File:Mixer1.jpg]]
 
 
 
Cette photo a été prise avant l’ajout de C29 et des atténuateurs.
 
 
 
 
== SLIM-MXR-4 rev A Mélangeur 4 avec Duplexeur ==
 
 
 
'''SLIM-MXR-4, Mélangeur, PCB taille “A”'''
 
'''& SLIM_MIXER_2 V2.2 bg6khc'''
 
 
Faites un « clic droit » avec votre souris et sélectionnez « Enregistrer la cible sous… » pour télécharger le fichier :
 
 
a. [file:///C:/My%20Documents/aWebPage/slim/expressfiles/skslim_mxr_3.sch SKSLIM-MXR-4.sch Rev A], Schémas, format ExpressPCB.
 
 
b. [file:///C:/My%20Documents/aWebPage/slim/plslim_mxr_3.txt LAYSLIM-MXR-4.pcb Rev A], Dessin du circuit, format ExpressPCB. Utilisez ce fichier pour situer l’emplacement des composants. Ne surtout pas utiliser pour passer commande auprès de ExpressPCB.
 
 
c. [file:///C:/My%20Documents/aWebPage/slim/expressfiles/skslim_mxr_3.sch PLSLIM-MXR-4.txt Rev B], Liste des composants (BOM) format TXT.
 
 
d. [http://www.scottyspectrumanalyzer.com/slim/expressfiles/pwb_mxr_ade.pcb PWB-MXR-ADE.pcb Rev 0], Dessin du PCB, format software. Utilisez ce fichier pour passer commande auprès de ExpressPCB. C’est là la configuration de base du design du SLIM-MXR-4
 
 
Le SLIM-MXR-4 a été conçu pour être utilisé dans le cadre de l’extension Analyseur Vectoriel (VNA) qui vient se greffer sur le MSA/TG. C’est un clone du SLIM-MXR-2, qui repose sur le même schéma de principe et utilise les mêmes composants. Certaines améliorations et modifications ont justifié le fait que le SLIM-MXR-4 possède sa propre documentation.
 
J1 reçoit le signal de l’Oscillateur Local (PLO1), J3 est utilisé en port d’entrée HF, J2 est la sortie du downconverter en direction de l’étage F.I. (détecteur de phase) .. La broche 2 de l’ADE-11X est reliée au pont de diode interne, qui descend jusqu’à 0 Hz. Mini-Circuits estime les pertes de conversion à -7,5 dB. Je les ais mesurées à -6,5 dB.
 
Le circuit bizarre sur le port « I » est un duplexeur. Le large spectre fréquences (et de bruit) sortant du mélangeur sur le port « I » « voient » un double chemin possible à la jonction de L15 et C16. Les fréquences supérieures à 33 MHz passent par C16 et se perdent dans la charge 50 Ohms R17. Les fréquences plus basses que 33 MHz passent par L15 et sont envoyées sur J2. Ce montage donne au mélangeur une impédance constante à 50 Ohms sur une large bande de fréquence. Ce duplexeur peut être recalculé pour n’importe quelle autre fréquence de coupure
 
 
 
'''Améliorations possibles'''
 
 
'''Revision A:''' Modifications successives depuis le 08-07-07 à nos jours
 
 
Pour les SLIM-MXR-4 Rev A, SKSLIM-MXR-4 Rev A, PWB-MXR-ADE Rev 0, PLSLIM-MXR-1 Rev A
 
Depuis la version B, un atténuateur de 2,5 dB a été ajouté sur le port d’entrée O.L. (J1), ce qui améliore l’adaptation d’impédance sur 50 Ohms.
 
 
Ces modifications améliorent grandement l’isolation du mélangeur, mais rend nécessaire que le niveau de l’O.L. sur J1 soit d’environ +9,5 dBm. Pour utiliser ce module à puissance réduite (+7 dBm), l’atténuateur doit être supprimé. Cependant, j’ai testé ce module avec tout juste +4.5 dBm sur J1 (soit +2 dBm en entrée du port L de l’ADE-11X) avec un accroissement de seulement -1 dB de pertes de conversion
 
 
1. Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur, pour améliorer l’isolation port à port de l’ADE-11X et l’adaptation d’impédance vis à vis de l’O.L. sur J1
 
2. Un atténuateur de 14 dB est installé sur l’entrée du port « R », pour améliorer la  l’isolation port à port de l’ ADE-11X et l’adaptation d’impédance de J3
 
 
'''SKSLIM-MXR-4, Schéma du SLIM-MXR-4'''
 
 
[[File:Skslim_mxr_4.gif]]
 
 
 
'''LAYSLIM-MXR-4, Schéma d'implantation et photo SLIM-MXR-4'''
 
 
[[File:Layslim_mxr_4.gif ]][[File:Mixer2.jpg]]
 
 
 
 
Cette photo a été prise avant l’ajout de l’atténuateur.
 
 
 
 
 
 
 
 
 
 
 
'''to be continued'''
 
 
 
 
 
 
 
 
 
 
 
 
 
= Réalisation =
 
 
== Instructions de montage spéciales des SLIMs dans le MSA: ==
 
 
Les paragraphes suivants vont aborder les considérations et modifications que l’on doit apporter aux SLIM lors de leur intégration au sein d’une architecture MSA.  Pour une description plus approfondie de chaque module, il vous suffit de cliquer sur le nom du module situé en début de paragraphe. Le lien renvoie vers une page dédiée à chaque module, avec son schémas, le dessin de son PCB, parfois même une photo de son circuit monté. Lors de l’intégration et de la construction de votre MSA, nous vous conseillons d’imprimer cette documentation. Créez-vous un dossier avec le diagramme général, le plan de disposition des modules, le schéma de câblage général ainsi que tous les schémas de chaque SLIL (les possesseurs de « tablet » et « pen computers » seront privilégiés). Ceci fait, je vous conseille d’annoter au feutre rouge  chaque mise à jour de la documentation ou noter vos modifications réalisées en fonction des instructions « spéciales » qui vont suivre. De cette manière, vous constituerez un document que vous pourrez conserver et qui retracera l’historique de votre système, lequel sera fort utile lors de l’intégration de nouveaux modules ou de modifications de design dans le futur. Cette page Web elle aussi évoluera avec le temps et l’apparition de nouveaux projets. Ce document sera également indispensable pour que je (''Scotty Sprowls, ndt'') puisse vous aider en cas de problème de réglage ou de détection de panne. Lorsque l’on me pose une question, ma première réponse est invariablement « quelle est votre configuration de MSA ? » Or une image (celle de votre « cahier de montage » scanné) vaut un million de mots.
 
 
 
=== La Carte de Commande SLIM-CB-NV rev C ===
 
 
 
La SLIM-CB-NV a été conçue avec un filtre de bruit. Ce filtre n’est plus nécessaire dans les configurations de MSA actuelles (''ndt mais peut servir de filtre pour le VNA ou, moyennant une modification –en cascadant deux filtres pour améliorer le facteur de qualité- comme « filtre très large bande d’essais » pour les premiers tests et certaines mesures n’exigeant aucune précision''). Tous les composants de cette section peuvent être omis.
 
 
Dans la partie « convertisseur de tension », seul le +20 V est utilisé dans le MSA. LE -10 V n’est pas utilisé dans l’appareil. C’est pourquoi C18 et C19 peuvent ne pas être installées. Mais les laisser n’accroitra ni le niveau de bruit, ni la consommation du MSA.
 
 
Notez également que le régulateur U5 est monté « sous » le pcb (''ndt sur les circuits PCB-Express de l’auteur uniquement. Ce n’est pas le cas pour les pcb de bg6khc venus sur Internet''). Ce circuit doit être boulonné sur le coté du boitier principal qui servira de radiateur. Si la carte de commande n’es pas installée près d’une cloison du boitier, il est recommandé de fixer un radiateur sur la patte métallique de U5, dont la disssipation peut atteindre 3W. Lors de la réalisation du câblage des fils de commande, un signal commun (DATACLK) est utilisé pour commander jusqu’à 5 modules différents simultanément. Les fils DATACLK partant de la Carte de Commande vers les différents modules DOIVENT IMPERATIVEMENT être de longueur égale, câblés si possible « en étoile », afin d’éviter tout problème de désynchronisation. L’on serait tenté de câbler tous les modules en « daisy chain » (série), mais cette méthode a de fortes chances de provoquer des réflexions de signal qui à leur tour entraineront des envois de commandes fantômes multiple et perturberont le fonctionnement du MSA.
 
 
 
=== Mélangeur 1 SLIM-MXR-1 rev A ===
 
 
 
{{Boite|titre=Note liminaire a l’attention des utilisateurs des PCB bg6khc
 
|arrondi=5px|bordure=indianred|fond=lavenderblush|flotte=left|couleurTitre=lightcoral|largeur=100%}}
 
Les PCB conçus par Yanjun Ma bg6khc sont différenciés en ''SLIM_MIXER_1 et SLIM_MIXER_2. Attentions, ces deux PCB se ressemblent énormément et peuvent être aisément confondus. Tous deux peuvent accepter des atténuateurs en entrée J1 (port « L ») et en sortie J3 (port « R »). La seule différence notable est le tracé destiné au réseau diplexeur sur J2 (port « I »). L’on considèrera donc que deux PCB marqués SLIM_MIXER_1 seront utilisés pour les mélangeurs 1 et 3 et que ceux marquée SLIM_MIXER_2 seront utilisés pour les mélangeurs 2 et 4. Les modifications ci-après suggérées (adaptation d’impédance sur certains ports)
 
 
{{BoiteFin}}
 
 
 
'''ATTENTION''' : L’entrée du MSA est couplée directement au premier mélangeur (Mixer 1). Les diodes du port « I » du mixer peuvent être détruites si l’on injecte un signal avec une composante continue ou si le niveau de HF est trop élevé. Il faut se souvenir de la règle : le signal d’entrée max ne doit pas être plus grand que celui appliqué sur le port « L » + 7 dBm (''ndt : 7,5 dBm sur L, soit 14,5 dBm max''). Pour éviter tout problème de surtension d’entrée, il est prudent d’insérer un atténuateur de 3 à 10 dB en entrée, qui de surcroît améliorera l’adaptation d’impédance en entrée de mélangeur et permettra de mesurer des signaux plus puissant. Mais cet ajout décalera d’autant la dynamique du MSA, décalage dont il faudra tenir compte lors des mesures.
 
 
Un atténuateur de 2,5 dB est installé sur le port « L » (J1) du mélangeur, pour améliorer la conversion et l’isolation port à port de l’ ADE-11X. L’O.L. (PLO 1) injecte un signal de 10 dBm qui, après passage dans cet atténuateur, se retrouve à 7,5 dBm sur l’entrée « L ».
 
 
Une fois le MSA testé et son fonctionnement vérifié, l’utilisateur peut s’étonner que le rapport Gain/Fréquence marque un changement abrupt pour tout ce qui se situe en dessous de 400 MHz. Cela est dû au filtre à cavité d’entrée qui crée une désadaptation du premier mélangeur aux fréquences autres que celles préconisées pour la première fréquence intermédiaire (à 1013 MHz). La fréquence effective est dépendante de la longueur de la liaison coaxiale entre le premier mélangeur (port R, prise J3) et le filtre à cavités. Ce changement brutal n’affecte pas la précision du MSA. Cette désadaptation peut être atténuée avec une légère modification (optionnelle) du module SLIM-MXR-1. Elle consiste à ajouter une capa de 1 pf et une résistance de 50 Ohms toutes deux en série, entre le port R et la masse. Voir la page des modifications du mixer 1 pour toute information de repérage des composants.
 
 
Bien que cela ne soit pas montré sur le schéma, un atténuateur peut être inséré sur l’entrée J2 pour que SLIM-MXR-1 présente une meilleure adaptation à 50 Ohms vis-à-vis des signaux extérieurs. R15 est remplacé par un atténuateur en Pi avec des valeurs de resistances présentant le facteur d’atténuation souhaité. Les résistances R11 (entrée du Pi, coté connecteur) et de sortie du Pi, R19 (coté mixer) ne sont pas montrées sur le schéma. Par exemple, un atténuateur 6 dB serait compose de R11=150 ohms, R15=37,4 ohms et R19=150 ohms. Le calcul d’un atténuateur peut être grandement simplifié en utilisant le logiciel gratuit AADE Filter Design proposé par AADE ([http://www.aade.com/filter.htm])
 
 
 
=== Mélangeur 2  SLIM-MXR-2 rev B ===
 
 
Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur, pour améliorer la conversion et l’isolation port à port de l’ADE-11X. L’O.L. (PLO 2) injecte un signal de 10 dBm qui, après passage dans cet atténuateur, se retrouve à 7,5 dBm sur l’entrée « L ».
 
 
Aucune remarque particulière n’est à ajouter à ce propos.
 
 
 
=== Mélangeur 3 SLIM-MXR-3 rev A ===
 
 
Le troisième mélangeur (Mixer 3) n’est utilisé que si le Générateur de Tracking est intégré au MSA. Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur et un atténuateur de 14 dB est installé sur l’entrée du port « R », tous deux pour améliorer la conversion et l’isolation port à port de l’ ADE-11X. L’O.L. (PLO 3) injecte un signal de 10 dBm qui, après passage dans le premier atténuateur, se retrouve à 7,5 dBm sur l’entrée « L ». Le niveau de puissance appliqué sur le port « R » est de 10 dBm (provenant de PLO 2), que l’atténuateur ramène a -4 dBm.
 
 
A noter que l’entrée « R » du second mélangeur travaille à une fréquence de 1024 MHz. L’impédance de l’ADE-11X n’est pas exactement de 50 Ohms. L’adaptation du port « R » à l’atténuateur de 14 dB peut être nettement amélioré en ajoutant une capa de 2 ou 2,2 pf à la position C9 entre la sortie de l’ADE-11X, pin 3 et la masse. La modification est également possible sur les PCB de bg6khc.
 
 
Normalement, la sortie J2 de PLO3 est directement reliée à l’entrée J1 du troisième mélangeur (Mixer 3). Pour effectuer des mesures dans la bande 1-2 GHz, cette sortie peut être utilisée comme générateur de tracking à haut niveau (10 dBm). Pour ce faire, il est conseillé de prévoir une sortie de J2/PLO3 (avec une signalisation du genre « PLO 3 Out, 1-2 GHz, +10 dBm ») ainsi que de J1/Mixer 3 sur la face avant du MSA. En temps normal, lors des mesures 0/1 GHz, un pontage en coax reliera ces deux prises.
 
 
 
=== Mélangeur 4 SLIM-MXR-4 rev A ===
 
 
Le quatrième mélangeur n’est utilisé que lorsque le MSA avec générateur de tracking est « étendu » avec la fonction VNA.
 
 
Un atténuateur de 2,5 dB est installé sur le port « L » du mélangeur et un atténuateur de 14 dB est installé sur l’entrée du port « R », tous deux pour améliorer la conversion et l’isolation port à port de l’ ADE-11X. L’O.L. (PLO 1) injecte un signal de 10 dBm qui, après passage dans le premier atténuateur, se retrouve à 7,5 dBm sur l’entrée « L ». Le niveau de puissance appliqué sur le port « R » est de 10 dBm (provenant de PLO 3), que l’atténuateur ramène a -4 dBm.
 
 
 
 
= Test module par module des SLIM du MSA =
 
 
 
 
== Test de la Carte de Commande ==
 
 
 
'''La Carte de Commande''' contient toute la circuiterie d’interface entre l’ordinateur et les modules individuels. Elle intègre également la partie régulation de tension nécessaire à l’alimentation des autres modules. Elle a besoin, d’une tension d’alimentation située entre +12 et +15 V CC et consomme 30 mA de courant. Pour alimenter la totalité du MSA, la Carte de Commande drainera environ 750 mA.
 
 
Pour la tester, les équipements suivants sont nécessaires :
 
 
*Une alimentation ou bloc secteur externe pouvant sortir +13,6V, 1000 mA.
 
 
*Un ordinateur, son moniteur et un câble parallèle pour imprimante (''ndt : attention, tous les convertisseurs USB/parallèle ne fournissent pas tous les signaux nécessaires au MSA. Voir à ce sujet les remarques de bg6khc sur son blog'')
 
 
*Un Voltmètre position CC
 
 
*Un Oscilloscope (1 MHz de bande passante ou mieux) est optionnel
 
 
*La Carte de Contrôle
 
 
Le logiciel de test de la Carte de Contrôle: [http://www.scottyspectrumanalyzer.com/operation/MSA_Software/controltest103.tkn controltest103.tkn] ou [http://www.scottyspectrumanalyzer.com/operation/MSA_Software/controltest103.bas controltest103.bas]
 
 
 
'''Procedure de Test''' :
 
 
1. Appliquez la tention (+13.6 v nominal) à la Carte de Commande.
 
 
2. Connectez la Carte de Commande au connecteur LPT de l’ordinateur.
 
 
[[File:Skslim_cb_nv1.gif]]
 
 
Ceci est la dernière version du schéma de la Carte de Commande du MSA. Si votre Carte de Commande est d’une version antérieure, vous devrez tester si les sorties du port imprimante de votre ordinateur sont dotée de résistances de pull-up, en mesurant la tension sur les broches de P5 SELECT, PE, WAIT, et ACK. La tension doit être supérieure à 2,0 volts min et 5,0 volts max. Si vous lisez une tension inférieure, débranchez l’alimentation, déconnectez la carte de l’ordinateur et ajoutez les résistances de pull-up R9 à R12.
 
 
[[File:Skslim_cb_nv2.gif]]
 
 
 
'''Tests des tensions''' :
 
 
1. Mesurer la tension d’entrée de la Carte de Commande sur la broche 1 de U5. Plage : +12,0 V à +18 V.
 
 
2. Mesurez la tension de sortie sur la broche 3 de U5. Elle doit être de +10,0 volts, +/- 0,2 volts.
 
 
3. Mesurez la tension de sortie du régulateur 5 volts, U6-1. Elle doit être de +5,0 volts, +/- 0,2 volts.
 
 
4. La LED 1 doit être allumée.
 
 
[[File:Skslim_cb_nv3.gif]]
 
 
5. Mesurez la sortie du multiplicateur de tension +20 volt sur P23-2 et P24-2. Elle doit être de +19,3 volts, +/- 0,3 volts. C’est là une tension à vide, puisque PLO 1 et PLO 3 ne sont pas connectés à la Carte de commande. En charge, cette tensions tombera à +18,94 volts +/- 0,3 volts.
 
 
6. Si vous disposez d’un oscilloscope, mesurez le niveau d’ondulation résiduelle sur P23-2 ou P24-2. Il doit être inférieur à 5,0 millivolts. Lorsque chargé par PLO 1 et PLO 3, l’ondulation “peak to peak” doit être de 20,0 millivolts. Lorsque le MSA est entièrement branché, une ondulation excessive créera une raie latérale sur chaque signal en mode Analyseur de Spectre. Un moyen pour éliminer ceci est d’augmenter la valeur de C20, C21, C23, C24 et C25.
 
 
7. Si C15 est installé, mesurez la présence du -10 volt du multiplieur sur P23-3 et P24-3. La tension doit être de -10,0 volts, +/- 0,3 volts. Le-10 volts n’est pas utilize dans le SLIM MSA, mais peut être utile pour des montages expérimentaux extérieurs dont la consommation n’excède pas 20 mA.
 
 
 
'''Le Bit Testing'''
 
 
Lancer le logiciels de test de la Carte de Commande. Si vous utilisez Liberty Basic, ouvrez controltest.bas. (version mise à jour ver.103). Dans le cas contraire, lancer le programme controltest.tkn. La fenêtre Code va s’ouvrir. Cliquer sur "Run" (Petit Bonhomme bleu). Une fenêtre intitulé "Control Board Test" va s’ouvrir. (''Ndt : il est préférable, pour les usagers des fichiers semi-compilés de type “.tkn”, d’associer le runtime et les dll associées au répertoire ou se trouve le code –ici controltest.tkn-. La méthode est décrite en Français sur le site Français de Liberty Basic, à l’adresse'' http://libertybasic.fr/pages/partie-v-1-creer-un-executable)
 
 
 
1. Toutes les lignes du port seront positionnées à « 0 » après avoir cliqué sur le bouton "SEND PORT DATA". Mesurez les broches suivantes sur le port du connecteur LPT. Elles doivent toutes être à 0 V (état bas) : broches 1 à 9, 14, 16 et 17.
 
Toutes les lignes du port seront positionnées à « 0 » après avoir cliqué sur le bouton "SEND CONTROL DATA". Toutes les sorties bufferisées de U1 ) U4 (P1 à P4, broches 2 à 9) doivent être à 0v.
 
Dans la fenêtre du logiciel de Test de la Carte de Commande, vous pouvez modifier chaque bit indépendamment en cliquant sur son bouton respectif. Vous pourrez utiliser un oscilloscope ou un voltmètre pour vérifier l’état des signaux
 
 
2. Cliquez sur le bouton «Pin 2, D0". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 2 soit à l’état haut.
 
Cliquez sur le bouton «Pin 17, Sel Inp, ENAP". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton "SEND CONTROL DATA". Vérifiez que la patte 11 de U1- passe à l’état haut. Vérifiez que la broche 2 de P1-pin 2 passe à l’état haut.
 
Toutes les autres broches de P1 doivent être à l’état bas.
 
Cliquez sur le bouton «Pin 16, InitPrint, ENAT". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton "SEND CONTROL DATA". Vérifiez que la patte 11 de U2- passe à l’état haut. Vérifiez que la broche 2 de P2-pin 2 passe à l’état haut.
 
Toutes les autres broches de P2 doivent être à l’état bas.
 
Cliquez sur le bouton «Pin 14, AutoFeed, WCLK". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton "SEND CONTROL DATA". Vérifiez que la patte 11 de U3- passe à l’état haut. Vérifiez que la broche 2 de P3-pin 2 passe à l’état haut.
 
Toutes les autres broches de P3 doivent être à l’état bas.
 
Cliquez sur le bouton «Pin 1, Strobe, FQUD". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND CONTROL DATA". Vérifiez que la patte 11 de U4- passe à l’état haut. Vérifiez que la broche 2 de P4-pin 2 passe à l’état haut.
 
Toutes les autres broches de P4 doivent être à l’état bas.
 
 
3. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 2, D0". Il doit passer de "1" à "0".
 
Cliquez sur le bouton «Pin 3, D1". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que la broche LPT 3 passe à l’état haut.
 
Vérifiez que P1-3 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-3 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-3 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-3 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
4. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 3, D1". Il doit passer de "1" à "0".
 
Cliquez sur le bouton «Pin 4, D2". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA ». Vérifiez que LPT-pin 4 soit à l’état haut.
 
Vérifiez que P1-4 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-4 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-4 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-4 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
5. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 4, D2". Il doit passer de "1" à "0".
 
Cliquez sur le bouton «Pin 5, D3". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 5 soit à l’état haut.
 
Vérifiez que P1-5 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-5 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-5 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-5 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
6. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 5, D3". Il doit passer de "1" à "0"..
 
Cliquez sur le bouton «Pin 6, D4". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 6 soit à l’état haut.
 
Vérifiez que P1-6 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-6 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-6 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-6 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
7. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 6, D4". Il doit passer de "1" à "0".
 
Cliquez sur le bouton «Pin 7, D5". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 7 soit à l’état haut.
 
Vérifiez que P1-7 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-7 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-7 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-7 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
8. Cliquez sur le bouton "1" à gauche du bouton "Pin 7, D5". Il passera de "1" à "0".
 
Cliquez sur le bouton «Pin 8, D6". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 8 soit à l’état haut.
 
Vérifiez que P1-8 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-8 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-8 passe à l’état haut. Toutes les autres broches de P3 doivent être à l’état bas.
 
Vérifiez que P4-8 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
9. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 8, D6". Il doit passer de "1" à "0".
 
Cliquez sur le bouton «Pin 9, D7". Le bouton associé situé à gauche passera de "0" à "1".
 
Cliquez sur le bouton «SEND PORT DATA". Vérifiez que LPT-pin 9 soit à l’état haut.
 
Vérifiez que P1-9 passe à l’état haut. Toutes les autres broches de P1 doivent être à l’état bas.
 
Vérifiez que P2-9 passe à l’état haut. Toutes les autres broches de P2 doivent être à l’état bas.
 
Vérifiez que P3-9 passe à l’état haut. Toutes les autres broches de P13 doivent être à l’état bas.
 
Vérifiez que P4-9 passe à l’état haut. Toutes les autres broches de P4 doivent être à l’état bas.
 
 
10. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 9, D7". Il doit passer de "1" à "0".
 
Vérifiez que toutes les broches de P1, P2, P3 à P4 doivent être à l’état bas.
 
 
11. Cliquez sur le bouton "1" situé à gauche du bouton "Pin 17, Sel Inp, ENAP". Il doit passer de "1" à "0".
 
Cliquez sur le bouton "1" situé à gauche du bouton "Pin 16, InitPrint, ENAT". Il doit passer de "1" à "0".
 
Cliquez sur le bouton "1" situé à gauche du bouton "Pin 14, AutoFeed, WCLK". Il doit passer de "1" à "0".
 
Cliquez sur le bouton "1" situé à gauche du bouton "Pin 1, Strobe, FQUD". Il doit passer de "1" à "0".
 
Cliquez sur le bouton "SEND CONTROL DATA".
 
Vérifiez que toutes les broches de P1, P2, P3 à P4 doivent être à l’état bas.
 
 
 
Les bits de Status doivent être lus lorsque le bouton "CAPTURE STATUS" est activé. Les bits de Status sont sur LPT-pin 11 pour WAIT, LPT-pin 10 pour ACK, LPT-pin 12 pour PE, et LPT-pin 13 pour Select. La broche LPT-pin 15 indique le signal ERROR, mais n’est connecté à rien sur la Carte de Commande.
 
 
1. Cliquez sur le bouton "CAPTURE STATUS". Tous les bits de status doivent être à "1". Vous pouvez alors forcer n’importe lequel des 5 bits de status à la masse : le status affichera (0) pour chaque bit forcé à l’état bas (il est nécessaire de rafraîchir l’affichage à chaque fois en appuyant sur le bouton CAPTURE STATUS).
 
 
Si ces points de contrôle ne fonctionnent pas, c’est que le port LPT1 n’est pas configuré correctement sur l’ordinateur. Le logiciel a été testé de manière intensive et semble fonctionner relativement bien même en l’absence de Carte de Commande connectée. (''ndt : attention : les cartes mères moderne -génération Vista et ultérieures- sont généralement livrée avec un port LPT désactivé dans les réglages du Bios. Vérifiez ce point ainsi que l’adresse exact de l’adresse : par défaut 378h - 37Fh'')
 
 
 
 
 
== Test du Module Mélangeur 2 ==
 
 
 
'''Le module Mixer 2, SLIM-MXR-2''' est le second mélangeur du circuit analyseur de spectre du MSA. Il doit être l’un des premiers module à être testé afin de rendre possible les tests des éléments subséquents. Les tests des caractéristiques du filtre passe-bas (duplexeur) situé en sortie de port « I » feront l’objet d’un autre paragraphe.
 
 
[[File:Skslim_mxr_2.gif]]
 
 
 
Pour réaliser les tests, les modules suivants sont nécessaires.
 
 
* Alimentation externe pouvant fournir un courant de +13,6V, 1000 mA
 
* Un ordinateur, son moniteur et un câble d’imprimante parallèle
 
* Le module Carte de Commande
 
* Le module de conversion Analogique/Numérique (A to D)
 
* Le module détecteur de phase (PDM, option)
 
* Le module Détecteur Logarithmique
 
* Le module DDS 2
 
* Le filtre à quartz final (F.I.)
 
* Le module Mélangeur 2
 
* Le bloqueur de composante continue « DC Block » (une capa de 100nf entre deux connecteur SMA)
 
* Le logiciel : [http://www.scottyspectrumanalyzer.com/operation/MSA_Software/spectrumanalyzer.tkn spectrumanalyzer.tkn]ou [http://www.scottyspectrumanalyzer.com/operation/MSA_Software/spectrumanalyzer.bas spectrumanalyzer.bas]
 
 
[[File:Mixer2test.gif]]
 
 
'''Configuration'''
 
 
1. Vérifiez que les modules SLIM suivants sont alimentés et câblés à la Carte de Commande : Oscillateur Maître, module DDS1, Détecteur logarithmique, Convertisseur A/D (ainsi que le PDM, module Détecteur de Phase si utilisé).
 
 
2. Connectez la sortie J1 de l’oscillateur Maître au J1 du mélangeur 2 via le DCBlock (voir plus haut). Ainsi, l’oscillateur est relié au port « L » du mélangeur ADE-11X via l’atténuateur de 2,5 dB. Le signal au niveau du port « L » doit être approximativement de +8,5dBm à 64 MHz. Le DC Block est obligatoire puisque la sortie du module oscillateur est couplée au potentiel d’alimentation (via l’inverseur/buffer 7SZ04) et que l’entrée J1 du mélangeur est reliée galvaniquement à la masse.
 
 
3. Connectez la sortie J2 de l’Oscillateur Maitre à l’entrée J1 « horloge » du module DDS1
 
 
4. Connectez la sortie J3 du module DDS1 au filtre à quartz final. Le niveau de sortie sur J3 doit être aux environs de -8dBm, signal mesuré à l’entrée du filtre.
 
 
5. Connectez la sortie du filtre à quartz au port « I » du mélangeur 2, connecteur J2. Le niveau de sortie du filtre, à sa fréquence dentrale, dépendra de la perte d’insertion du filtre. Cette perte d’insertion a été déterminée lors du test du « Filtre à Quartz Final »
 
 
6. Connectez J3, port « R » du mélangeur 3 au module détecteur logarithmique.
 
 
7. Connectez la sortie J2 du module détecteur logarithmique au connecteur J1 du module convertiseur A to D. Commutateur vidéo en position « Mid » ou « Medium »
 
 
8. Branchez l’alimentation au connecteur de la Carte de Commande. Elle doit fournir une tension de 10 Volts aux modules : DDS, Oscillateur Maître, Détecteur Logarithmique, et Convertisseur A to D (ou au module Détecteur de Phase).
 
 
'''Test'''
 
 
1. Exécutez le logiciel MSA. Le graphe principal va s’afficher et effectuer un balayage en mode « Analyseur de Spectre ».
 
 
2. Si la fréquence du Filtre à Quartz Final est bien de 10,7 MHz, la trace « Magnitude » sera affichée. Son niveau n’a aucune importance pour le moment.
 
 
3. Arrêtez le balayage. Ouvrez la fenêtre de Paramètres de Balayage. Changez la fréquence centrale (Cent.) et réglez-la sur celle de votre filtre à quartz (10,7 MHz). Changez la largeur de la fenêtre de balayage (Span) à 10 fois la valeur de la bande passante de votre filtre (30 kHz pour un filtre 3 kHz). Cliquez successivement sur « OK » puis « Restart ». Le niveau d’amplitude n’a toujours aucune importance.
 
 
4. Arrêtez le balayage ouvrez la fenêtre « Tests Spéciaux » (Setup, sous menu Special Tests). Cliquez sur « DDS1 Sweep ». Dans la fenêtre principale, cliquez sur « Continue ».
 
 
5. La trace « Magnitude » résultante doit maintenant indiquer la bande passante effective de votre filtre à quartz. La puissance maximale qui est mesurée (Mag Scale) est la résultante de la somme des puissances des deux produits du mélangeur, 53,3 et 74,7 MHz. La moitié de ce total moins la puissance en entrée du mélangeur équivaut à la perte d’insertion du mélangeur. Les pertes de conversions doivent être approximativement de 7 dB, +/-1 dB. Par exemple : Si la sortie du filtre à quartz est mesurée à -12 dBm et que la puissance totale de sortie du mélangeur est de -15,5 dBm, comme indiqué par l’échelle «Magnitude » (Log Det output), alors la puissance de ces signaux est la moitié tu tout, soit -18,5 dBm. La perte de conversion est donc de = -18,5 - (-12) = -6.5 dB. Toute valeur plus grande que -8,5 dB de perte doit être considéré comme un problème. Ces opérations achevées, inscrivez sur votre « sortie papier » du plan de votre MSA, section « mélangeur 2 », la perte d’insertion calculée qui sera utile à  toutes fins de référence.
 
 
6. Les données ci-avant seront précises si :
 
a. une calibration grossière du détecteur logarithmique a été effectuée et
 
b. l’amplitude du signal en dehors de la courbe du filtre est située au moins 15 dB en dessous du niveau maximum du « plateau » du filtre sur la fréquence centrale. Ce signal « extérieur » est une fraction du signal de l’oscillateur 64 MHz provenant du port « L » du mélangeur ADE-11X et passant sur le port « R ». Il (ce signal) caractérise l’isolation de port à port et doit être au moins de -55 dB. Comme le port « L » est aux environs de +8dBm, le niveau de signal « extérieur » doit se situer à -47 dBm ou moins encore.
 
c. L’isolation des ports « I » vis-à-vis de « R » doit également être de -55 dB ou meilleure. Ainsi, le niveau de signal d’entrée à 10,7 MHz (-12dBm) qui franchirait la sortie du mélangeur sera inférieure à -67 dBm.
 
 
7. Ceci achève le test principal et la vérification du second mélangeur. Je suggère que vous démontiez le Mélangeur 2 et le substituiez avec le Mélangeur 2 et que vous vous reportiez au chapitre traitant du test du « Module Mélangeur 1 »
 
 
 
 
 
== Test du Module Mélangeur 1 ==
 
 
 
'''Le module Mixer 1, SLIM-MXR-1''' est le premier mélangeur du circuit analyseur de spectre du MSA. Il doit être l’un des premiers module à être testé afin de rendre possible les tests des éléments subséquents. Il peut être testé de la même manière que le Mixer 2 et les résultats doivent être identiques.
 
 
[[File:Skslim_mxr_1.gif]]
 
 
'''Configuration du montage de test'''
 
 
[[File:Mixer1test.gif]]
 
 
Utilisez la procédure décrite dans le paragraphe « module Mélangeur 2 ». Substituez simplement les termes « mélangeur 2 » ou « Mixer 2 » par « mélangeur 1 » ou « Mixer 1 ».
 
 
Si vous venez juste d’achever les tests du second mélangeur, vous pouvez simplement démonter le Mixer 2 et le remplacer par le premier mélangeur. Si le balayage (sweep) a été arrêté, cliquez sur le bouton « Continue » et reprenez la procédure à partir de l’étape 3. Inscrivez les valeurs de perte d’insertion mesurées et inscrivez-les sur votre schéma.
 
 
Après avoir achevé les tests sur le mélangeur 1, nous vous recommandons de le démonter et de le remplacer par le mélangeur 3. Reportez vous aux tests du paragraphe « Module Mélangeur 3 ».
 
 
 
 
== Test du Module Mélangeur 3 ==
 
 
 
'''Le module Mixer 3, SLIM-MXR-3''' est le troisième mélangeur appartenant au circuit VNA du MSA. Il doit être l’un des premiers module à être testé afin de rendre possible les tests des éléments subséquents. Il peut être testé de la même manière que le Mixer 2  et Mixer 1 mais les résultats diffèreront en raison des atténuateurs insérés dans le circuit du port « R ».
 
 
[[File:Skslim_mxr_3.gif]]
 
 
'''Configuration du montage de test'''
 
 
[[File:Mixer3test.gif]]
 
 
Utilisez la procédure décrite dans le paragraphe « module Mélangeur 2 ». Substituez simplement les termes « mélangeur 2 » ou « Mixer 2 » par « mélangeur 3 » ou « Mixer 3 ». Effectuez ces tests jusqu’au point 4 (dans le paragraphe « Tests du Mélangeur 2 » et continuez avec le point 5 situé ci-dessous.
 
 
Si vous venez d’achever le test du mélangeur 1, vous pouvez le désinstaller et le remplacer par le mélangeur 3. Si le balayage a été arrêté, cliquez sur « Continue ».
 
 
5. La trace « Magnitude » résultante doit maintenant indiquer la bande passante effective de votre filtre à quartz. La puissance maximale qui est mesurée (Mag Scale) est la résultante de la somme des puissances des deux produits du mélangeur, 53,3 et 74,7 MHz. La moitié de ce total moins la puissance en entrée du mélangeur équivaut à la perte d’insertion du mélangeur. Les pertes de conversions doivent être approximativement de 7 dB, +/-1 dB. Les pertes de conversion du module doivent se situer aux environs de 21 dB +/-1 dB, en raison des quelques 14 dB d’atténuation du circuit du port «R ». Par exemple : Si la sortie du filtre à quartz est mesurée à -12 dBm et que la puissance totale de sortie du mélangeur est de -29.5 dBm, comme indiqué par l’échelle «Magnitude » (sortie du détecteur logarithmique), alors la puissance de ces signaux est la moitié tu tout, soit -32.5 dBm. La perte de conversion est donc de = -32.5 - (-12) = -20.5 dB. Toute valeur plus grande que -23 dB de perte doit être considéré comme un problème. Ces opérations achevées, inscrivez sur votre « sortie papier » du plan de votre MSA, section « mélangeur 3 », la perte d’insertion calculée qui sera utile à  toutes fins de référence.
 
 
6. Les données ci-avant seront précises si :
 
a. une calibration grossière du détecteur logarithmique a été effectuée et que
 
b. l’amplitude du signal en dehors de la courbe du filtre est située au moins 15 dB en dessous du niveau maximum du « plateau » du filtre sur la fréquence centrale. Ce signal « extérieur » est une fraction du signal de l’oscillateur 64 MHz provenant du port « L » du mélangeur ADE-11X et passant sur le port « R ». Il (ce signal) caractérise l’isolation de port à port et doit être au moins de -55 dB. Comme le port « L » est aux environs de +8dBm, le niveau de signal « extérieur » doit se situer à -61 dBm ou moins encore.
 
c. L’isolation des ports « I » vis-à-vis de « R » doit également être de -55 dB ou meilleure. Ainsi, le niveau de signal d’entrée à 10,7 MHz (-12dBm) qui franchirait la sortie du mélangeur sera inférieure à -81 dBm.
 
 
7. Ceci achève le test principal et la vérification du troisième mélangeur. Je suggère que vous démontiez le Mélangeur 3 et le substituiez avec le Mélangeur 4 et que vous vous reportiez au chapitre traitant du test du « Module Mélangeur 4 »
 
 
 
 
== Test du Module Mélangeur 4 ==
 
 
 
'''Le module Mixer 4, SLIM-MXR-4''' est le quatrième mélangeur du MSA et fait partie du circuit  de détection de phase du VNA. Il doit être testé à ce stade afin de rendre possible les tests des éléments subséquents. Il peut être testé de la même manière que le Mixer 3 et les résultats doivent être identiques. Les tests des caractéristiques du filtre passe-bas (duplexeur) situé en sortie de port « I » feront l’objet d’un autre paragraphe.
 
 
[[File:Skslim_mxr_4.gif]]
 
 
'''Configuration du montage de test'''
 
 
[[File:Mixer4test.gif]]
 
 
Utilisez la procédure décrite dans le paragraphe « module Mélangeur 2 ». Substituez simplement les termes « mélangeur 2 » ou « Mixer 2 » par « mélangeur 4 » ou « Mixer 4 ». Effectuez ces tests jusqu’au point 4 (dans le paragraphe « Tests du Mélangeur 2 » et continuez avec le point 5 situé ci-dessous.
 
 
Si vous venez d’achever le test du mélangeur 3, vous pouvez le désinstaller et le remplacer par le mélangeur 4. Si le balayage a été arrêté, cliquez sur « Continue ».
 
 
5. La trace « Magnitude » résultante doit maintenant indiquer la bande passante effective de votre filtre à quartz. La puissance maximale qui est mesurée (Mag Scale) est la résultante de la somme des puissances des deux produits du mélangeur, 53,3 et 74,7 MHz. La moitié de ce total moins la puissance en entrée du mélangeur équivaut à la perte d’insertion du mélangeur. Les pertes de conversions doivent être approximativement de 7 dB, +/-1 dB. Les pertes de conversion du module doivent se situer aux environs de 21 dB +/-1 dB, en raison des quelques 14 dB d’atténuation du circuit du port «R ». Par exemple : Si la sortie du filtre à quartz est mesurée à -12 dBm et que la puissance totale de sortie du mélangeur est de -29.5 dBm, comme indiqué par l’échelle «Magnitude » (sortie du détecteur logarithmique), alors la puissance de ces signaux est la moitié tu tout, soit -32.5 dBm. La perte de conversion est donc de = -32.5 - (-12) = -20.5 dB. Toute valeur plus grande que -23 dB de perte doit être considéré comme un problème. Ces opérations achevées, inscrivez sur votre « sortie papier » du plan de votre MSA, section « mélangeur 4 », la perte d’insertion calculée qui sera utile à  toutes fins de référence.
 
 
6. Les données ci-avant seront précises si :
 
a. une calibration grossière du détecteur logarithmique a été effectuée et que
 
b. l’amplitude du signal en dehors de la courbe du filtre est située au moins 15 dB en dessous du niveau maximum du « plateau » du filtre sur la fréquence centrale. Ce signal « extérieur » est une fraction du signal de l’oscillateur 64 MHz provenant du port « L » du mélangeur ADE-11X et passant sur le port « R ». Il (ce signal) caractérise l’isolation de port à port et doit être au moins de -55 dB. Comme le port « L » est aux environs de +8dBm, le niveau de signal « extérieur » doit se situer à -61 dBm ou moins encore.
 
c. L’isolation des ports « I » vis-à-vis de « R » doit également être de -55 dB ou meilleure. Ainsi, le niveau de signal d’entrée à 10,7 MHz (-12dBm) qui franchirait la sortie du mélangeur sera inférieure à -81 dBm.
 
 
7. Ceci achève le test principal et la vérification du second mélangeur. Les tests des caractéristiques du filtre passe-bas (duplexeur) situé en sortie de port « I » feront l’objet d’un autre paragraphe.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
= Validation =
 
 
= Ressources =
 
 
== Description ==
 
== Description ==
 
Le "machin" :
 
Le "machin" :
Line 867: Line 407:
  
 
->Le 18/11/2011 : 82€ + 20€ de frais de port = '''102€'''.
 
->Le 18/11/2011 : 82€ + 20€ de frais de port = '''102€'''.
 +
 +
'''Pour commander les composants Mini-Circuits''' aux tarifs négociés originellement par Scotty Sprowls, il est nécessaire d’effectuer une demande de devis par email, en faisant référence au
 +
 +
[[Media:Mini-circuit_quote.pdf |« kit KXMA1+ »]]
 +
 +
(ce document est un fichier d'exemple à expurger pour y insérer vos coordonnées). Le courriel doit être envoyé à l’attention de Monsieur Peter Gaines, PETER@UK.MINICIRCUITS.COM
 +
 +
Une fois le devis accepté, signé et renvoyé (scannez la feuille remplie à la main par exemple), vous devez joindre un autre document rempli et signé. C’est la
 +
 +
[[Media:EUS_minicircuits.pdf |« ''déclaration d’utilisation d’utilisateur final''»]]
 +
 +
C’est en quelque sorte un document qui prouve que vous n’utilisez pas ces composants à des fins militaires ou terroristes. Ce document est important et doit être rempli sérieusement, sous peine ne de se voir refuser la commande (il s’agit d’une contrainte légale qui touche toutes les entreprises US à l’export, et non un excès de paranoïa de la part de ce fournisseur en particulier).
 +
 +
A noter que le règlement de cette facture ne peut se faire que par carte de crédit, dont les numéros, date d'expiration etc doivent être communiqués par courriel à Monsieur Gaines. Cette opération peut en refroidir certains, et inciter d'autres à utiliser une procédure de chiffrement des correspondances. Précisons toutefois qu'il s'agit là d'une pratique de Mini-Circuit UK en vigueur depuis plusieurs années, et qui n'a jamais soulevé le moindre problème.
 +
 +
Le filtre à cavité peut être soit commandé en kit (soudure au four) soit de fabrication "maison". Le kit est proposé par Len Spiker (redmond2@iinet.net.au), qui lance quelques productions à un rythme très variable dépendant de la demande de la communauté. Ce kit, port compris, coûte aux environs de 75$.

Latest revision as of 13:05, 31 October 2016

Page référencée dans Passion :
Radio Radios logicielles, transmissions numériques, expérimentations HF

Analyseur de spectre et VNA 0-3GHz

Les principaux éléments de l'analyseur (cliquez sur la photo pour agrandir)
Le premier MSA opérationnel du groupe de montage Electrolab réalisé par Michel F1CHM (cliquez sur la photo pour agrandir)

Introduction

Plusieurs sympathisants de l'Electrolab ont porté de l'intérêt au projet de Scotty Sprowls visant à développer un analyseur de spectre modulaire. Ce projet, entièrement open source tant sur le plan hardware que software, a attiré l'attention du tout nouveau groupe d'intérêt "Radiofréquences" de l'association. Il a donc été décidé de construire un ou plusieurs de ces appareils essentiellement pour les raisons suivantes :

  • Ajouter un équipement performant et maintenable au laboratoire
  • Apprendre en faisant
  • Apporter support et contributions à ce beau projet

En effet, après réalisation du premier exemplaire, la volonté est de poursuivre l'aventure en faisant évoluer le design, bien évidemment, toujours de manière libre.

Les informations étant pour le moins éparses sur le sujet (mais nombreuses), ces pages se veulent aussi à la fois un recueil et un point de repère pour toute personne ayant la volonté de se lancer dans l'aventure.

Descriptif

La description originale de Scotty Sprowls est visible, sur le web, à cette adresse : http://www.scottyspectrumanalyzer.com/

Un groupe de discusion Yahoo sert de lien à la communauté anglophone intéressée par ce projet http://groups.yahoo.com/group/spectrumanalyzer/

De manière très sommaire, cet instrument peut être décrit comme une "interface de mesure". Pour fonctionner, il doit être associé à un microordinateur, lequel se charge à la fois du pilotage des différentes sections de l'appareil ainsi que de l'affichage des mesures effectuées. La liaison entre l'interface et l'ordinateur s'effectue soit via le port parallèle,soit via une interface USB. Le logiciel de pilotage a été conçu en Basic sous Windows, et un portage en Python est disponible sous Google Code.

Démarré en janvier 2001, c'est bien entendu un projet qui a beaucoup évolué avec le temps. D'un analyseur de spectre relativement rudimentaire 0-1GHz dans ses premières versions, c'est devenu au fil de temps un bel appareil 0-3GHz, avec générateur de tracking intégré, et la fonction d'analyseur de réseaux vectoriel.

P3040052.jpg
A titre d'exemple, le MSA de Bob Fish, K6GGO.


La raison de cette vigoureuse évolution du projet est une conception extrêmement modulaire dès les toutes premières versions. Aujourd'hui, il s'agit d'une vingtaine de circuits imprimés aux fonctions très distinctes. Il a donc été facile aux divers contributeurs d'améliorer telle ou telle fonction en modifiant (voire en reconcevant) tel ou tel circuit.

Il faut noter ici que Scotty n'a jamais commercialisé aucune version de son design, pas même sous forme de kit de PCB ou de de composants. La description est donc bien uniquement une description au sens où les schémas, fichiers de routage, et descriptifs de mise au point de chaque carte constituant l'appareil sont disponibles et en libre accès.

Pour illustrer l'aspect très modulaire du "Scotty", on peut voir que différents niveaux de "finition" sont possibles :

  • Basique : c'est un "noyau" permettant d'extension aux niveaux suivants. Il s'agit de l'analyseur de spectre fonctionnant en trois gammes : 0-1GHz, 1-2GHz, et 2-3GHz (voire plus haut si l'on utilise un mélange harmonique)
  • Niveau 2 : Ajout du générateur de tracking (avec des fonctions plutôt plaisantes comme la possibilité d'introduire un offset de fréquence entre la fréquence générée et celle d'analyse). On peut, à ce stade, effectuer de l'analyse de réseaux scalaire (pas d'information de phase). Un outil logiciel permettant de faire de l'analyse de quartz est disponible.
  • Niveau 3 : Ajout de la fonction d'analyse vectorielle de réseaux (VNA). Il s'agit d'ajouter l'information de phase à l'appareil niveau 2. Les possibilités sont gigantesques, et de nombreux outils logiciels permettent de faciliter la vie de tout électronicien (mesure d'impédance, analyse de filtres, mesure de composant, conversion de modèles série / parallèle, mesure de caractéristiques de lignes de transmission, analyse d'antenne...).

Bien entendu, l'appareil auquel nous nous intéressons est celui répondant à l'éventail de besoins le plus large. Toutes les considérations qui viennent ci-après concernent donc un appareil "niveau 3".

La dynamique de l'analyseur de spectre modulaire (MSA) dépend du filtre de résolution utilisé. Avec un filtre de 2kHz, la dynamique est de l'ordre de 100dB. En mode vectoriel, la mesure de phase est valide sur une dynamique de l'ordre de 90dB.

Specifications du MSA :

Version de base

Système à double changement de fréquence. Première F.I. à 1013,3 MHz, seconde F.I. à 10.7 MHz.

Plage de fonctionnement : 10 KHz à 1 GHz, 1-2 GHz (Option filtre 2G), et 2-3 GHz

Résolution en fréquence < 6 Hz

Sensibilité -110 dBm

Dynamique supérieure à 85 dB, selon la résolution de la bande passante

Resolution d’amplitude 0.04 dB ou mieux

Resolution de bande passante selon le filtre adopté (l’auteur utilise des filtres 1 kHz, 4 kHz et 30 kHz)

Facteur de bruit <23 dB

Bruit de phase -91 dBc/Hz, @ 1 MHz, 10 KHz de la porteuse

Réjection de la fréquence image (dans la bande) meilleure que -100 dBc

Intermodulation (IMD) -60 dBc ou mieux

Puissance Max du signal HF d’entrée = +13 dBm; DC= 20 ma

Nombre de modules SLIM : 11, et un filtre à cavités coaxiales

Coût $300 à $500, selon options. Bien inférieur avec une « boite à çà peut servir » bien remplie

Specifications du générateur de tracking MSA/TG

Fréquence de sortie < 1 Hz à 1000 MHz @ -11 dBm, +/- 1 dB (différence)

2000 MHz à 3000 MHz @ -14 dBm, +/- 2 dB (somme)

1000 MHz à 2000 MHz @ -20 dBm, +/- 2 dB (feedthru)

1000 MHz à 2000 MHz @ +9 dBm, +/- 1 dB (bypass option)

Nombre de modules SLIM 3 qui s’ajoutent au MSA « version de base »

Coût $85 à $100, selon options

Specifications de l’extension Analyseur Vectoriel (VNA), MSA/TG/VNA

Plage de fonctionnement identique à celle du MSA de base (0-1 GHz, 1-2 GHz, 2-3 GHz)

Plage dynamique instantanée plus grande que 70 dB

Résolution de phase : 0,1 degré ou mieux

Nombre de modules SLIM 2 qui s’ajoutent au MSA /TG

Coût $16 à $25, selon options

Les différents éléments nécessaires et coûts réels

Le principal avantage du « Scotty » est d’être modulaire. Tant mécaniquement et électroniquement que financièrement. En d’autres termes, rien n’interdit à un amateur de se lancer dans la fabrication d’un MSA et de limiter ses achats à « un module par mois » ou moins. Dans sa version la plus minimaliste (analyseur 1 GHz, sans générateur de tracking ni analyseur vectoriel), Scotty a estimé (voir son tableau ) que la dépense minimale était de 241 dollars, soit 180 euros. En d’autres termes, le prix moyen d’un module est de 16 euros, il y en a 11, ce qui veut dire qu’en commençant tout de suite, le père noël vous apportera votre MSA pour l’hiver 2012 et la facture aura été indolore.

Mais ce calcul est légèrement biaisé et l’étalement des dépenses un peu plus complexe.


La page "Différents éléments et coût réel" fait le point à ce sujet.

Fonctionnement du MSA

Selon la gamme de fréquence, les MSA ne fonctionne pas de manière identique. Pour les bandes 0-1GHz et 2-3GHz, on dispose d'une architecture à double changement de fréquence. Pour la bande 1-2GHz, en revanche, seul un changement de fréquence simple est mis en œuvre.

La FI finale est à 10.7MHz. Cette valeur a été choisie afin de pouvoir profiter des filtres standards disponibles dans le commerce. Le détecteur d'amplitude utilisé est un détecteur logarithmique ayant une dynamique de 100dB, et le signal qui en est issu est numérisé par un convertisseur 16 bits.


La page "Fonctionnement du MSA" détaille ces paramètres.

Analyse du système

Gain de conversion

Bilan des puissances :

  • MIXER1 : -6.5dB
  • Cavité coaxiale : -7dB
  • MIXER2 : -6.5dB
  • Ampli FI : +40dB
  • Filtre de résolution : # -4dB pour bande passante de 2.2kHz.

Total : +16dB

Bien entendu, ce n'est qu'un ordre de grandeur... Les sources de dispersions sont nombreuses, en particulier au niveau des filtres homemade (filtre de résolution et cavité).

Sensibilité

Pour un analyseur de spectre, la sensibilité peut être définie comme étant la puissance minimale d'un signal CW à l'entrée de l'appareil permettant de le mesurer et de quantifier sa sa puissance. Ici, la sensibilité est essentiellement dépendante du détecteur logarithmique, mais le filtre de résolution joue aussi un rôle déterminant (voir paragraphe sur le niveau de bruit).

On considèrera ci-après que le filtre de résolution a une bande passante de 2.2kHz.

  • Pour la mesure d'amplitude :

C'est le niveau de puissance à l'entrée qui cause une augmentation du niveau de bruit. Analog Devices spécifie le niveau de bruit de l'AD8306 comme étant -91dBV (28.18µV). Grâce au transformateur d'un rapport 1:4 sur l'entrée 50Ohms du module de détecteur logarithmique, la tension à ce point doit donc être de 7.045µV (-90dBm). Le gain du MSA étant de 16dB, cette puissance est obtenue pour un signal d'entrée à -106dBm.

  • Pour la mesure de phase :

C'est la puissance d'entrée qui cause une déviation de plus de 2° de la sortie limitée du détecteur logarithmique. Analog Devices spécifie cette puissance pour l'AD8306 à -73dBV. C'est équivalent à -72dBm à l'entrée du module de détection log. En prenant en compte le gain de conversion de 16dB du MSA, on arrive donc à une puissance d'entrée minimale de -88dBm pour effectuer une mesure de phase.

Puissance d'entrée maximale

  • Puissance maximale avant destruction : selon les spécifications du Mini-circuits pour le mélangeur d'entrée (AD-11X), il ne faut pas dépasser +17dBm (50mW).
  • Puissance maximale avant dégradation des performances :
    • Mesure d'amplitude :+9dBV sur l'AD8306 selon les spécifications d'Analog Devices, et donc -6dBm / 50Ohms à l'entrée de l'analyseur.
    • Mesure de phase : +3dBV sur l'AD8306 selon les spécifications d'Analog Devices, et donc -18dBm / 50Ohms à l'entrée du MSA

Dynamique

La dynamique est la différence entre la puissance maximale et la puissance minimale acceptable à l'entrée du MSA.

  • Mode analyseur de spectre : de -106dBm à -6dBm = 100dB
  • mode VNA : de -88dBm à -16dBm = 70dB
     Les essais réels montrent des résultats bien meilleurs, notamment 
     pour la dynamique en mode VNA. Les opérations d'étalonnage permettent
     de travailler bien au-delà des spécifications de l'AD8306.

Niveau de bruit

L'analyse préliminaire réalisée ci-dessus concernant les bilans de puissance prend pour hypothèse que le niveau de bruit de l'analyseur est déterminé par le niveau de bruit du détecteur logarithmique. Ce paragraphe décrit les raisons de cette hypothèse :


Citation de Scotty Sprowls :

"The Input Noise Floor of the MSA is determined by the self generated noise of all the circuits within the MSA. That is, it is assumed that there is no "real" signal entering the MSA to be measured by the Log Detector. This is a reality if the MSA is commanded to any frequency that does not create spurious signals. Spurs are explained near the end of this page. The devices, Mixer 1 and Mixer 2 do create noise, but their total level is below the physical noise floor of -174 dBm/sqrtHz (a 1 Hz bandwidth).

Therefore, the total noise created in the MSA is the combination of the two I.F. Amplifiers and the Log Detector. The first I.F. Amplifier has a noise figure of 3 dB and a gain of 20 dB. The broad-band noise generated by the first amplifier is = -174dBm +3dB(amp noise figure) +20dB(gain) = -151 dBm /sqrtHz. The second amplifier (20 dB gain) increases the noise to -131 dBm /sqrtHz. The total output noise is decreased by the bandwidth of the Final Xtal Filter, plus its loss. (Assume the bandwidth is 2.2 KHz, with -4 dB loss). The total noise at the input to the Log Det SLIM = -131 dBm /sqrtHz + 10logBW(2.2KHz) - 4dB(filter loss) = -131 +33.4 -4 = -101.6 dBm. This total noise value of -101.6 dBm is much lower than the input noise floor (-90 dBm) of the Log Detector. This means that the Log Detector is determining the noise floor and that previous assumption that the MSA Dynamic Range of 100 dB is valid.

If the 2.2 KHz Final Xtal Filter is replaced with a 15 KHz bandwidth filter, the noise floor will increase. The total noise at the input to the Log Det will be: Total noise = -174dBm +3dB(amp noise figure) +20dB +20dB +10logBW(15KHz) -4dB(filt loss) = -89.2 dBm. This total noise level is .8 dB greater than the -90 dBm noise floor of the Log Detector. Therefore, the circuitry in front of the Log Detector Module determines the MSA input noise floor, not the Log Detector. Using the MSA Gain figure of 16 dB, the minimum signal level at the input to the MSA is now -105.2 dBm. Therefore, the Dynamic Range of the MSA with the 15 KHz filter is 99.2 dB (-105.2 dBm to -6 dBm)."

Construction du MSA

Le MSA est conçu pour être construit selon une chronologie bien établie. En la respectant, non seulement les chances d'arriver au bout du projet augmentent drastiquement, mais en plus, les problèmes de test et de mise au point sont grandement simplifiés.


L'ordre de construction est le suivant :


Modules optionnels (hors pcb BG6KHC)


Pour chacun de ces modules, la page associée rassemble Quatre sections :

  • Description technique :

Ce chapitre explique comment fonctionne le module, son rôle au sein du MSA (MSA « de base », TG ou VNA), la nature des signaux entrant et sortants, la manière dont le signal affecte le comportement du module et la manière dont le module transforme le signal. Ce chapitre est systématiquement accompagné du schéma électronique du module SLIM considéré. Certain chapitres descriptifs sont accompagnés d’instruction de montage sortant du cadre des « modifications » et servant essentiellement à optimiser le comportement du module.

Le début de chaque chapitre comporte les liens externes pointant sur la BOM (Bill of material, liste des composants du module), un dessin du PCB servant au repérage des composants en cours de montage, et un fichier au format Express-PCB pouvant servir à la commande de circuits imprimés auprès de ce sous-traitant. Il est à noter que le programme Express-PCB est totalement propriétaire, qu’il ne délivre aucun fichier Gerber et oblige ses utilisateurs à employer les services de l’entreprise en question (société située aux USA). Il est toutefois possible d’effectuer des sorties imprimante des circuits pour en tirer directement des transparents à l’échelle 1 si l’on ne souhaite pas reprendre le « cuivre » avec un outil CAO plus sérieux.


  • Instructions de construction :


Il s'agit ici d'aborder les considérations et modifications que l’on doit apporter aux SLIM lors de leur intégration au sein d’une architecture MSA. Lors de l’intégration et de la construction de votre MSA, nous vous conseillons d’imprimer cette documentation. Créez-vous un dossier avec le diagramme général, le plan de disposition des modules, le schéma de câblage général ainsi que tous les schémas de chaque SLIL (les possesseurs de « tablet » et « pen computers » seront privilégiés). Ceci fait, je vous conseille d’annoter au feutre rouge chaque mise à jour de la documentation ou noter vos modifications réalisées en fonction des instructions « spéciales » qui vont suivre. De cette manière, vous constituerez un document que vous pourrez conserver et qui retracera l’historique de votre système, lequel sera fort utile lors de l’intégration de nouveaux modules ou de modifications de design dans le futur. Et puis... Ce document sera également indispensable pour pouvoir trouver de l'aide en cas de problème. A toute question, on vous demandera invariablement « Quelle est votre configuration de MSA ? » Or une image (celle de votre « cahier de montage » scanné) vaut un million de mots.


  • Instructions de validation :


Egalement intitulé « Test Unitaire », ce chapitre est une procédure de test pas à pas de vérification du bon fonctionnement des modules un à un. En règle générale, la procédure débute par une vérification des relevés statiques de tension importants, check liste généralement suivie par un test « en condition » des fonctions dynamiques (HF).


  • Platine bg6khc :


Comme son nom l'indique, cette section est spécifique aux détails de montage, modifications, adaptation et différences des circuits imprimés vendus par Yanjun Ma BG6KHC. Chaque chapitre contient au moins une photographie haute définition du module construit


Le MSA s’utilise lui-même pour se tester et se calibrer. Chaque chapitre débute donc par les instructions de raccordement des différents modules à raccorder. L’ordre de test est donc très important, puisqu’il est impossible de tester un module avec d’autres modules qui n’ont pas encore été testés et validés.


Cet ordre est le suivant :

  • Carte de Commande
  • Convertisseur A/N
  • Détecteur Logarithmique (préréglage grossier)
  • Maître Oscillateur
  • DDS 1
  • DDS 3 (extension générateur de Tracking)
  • Détecteur log (test final)
  • Filtre à quartz de résolution
  • Mélangeur 2
  • Mélangeur 1
  • Mélangeur 3 (extension générateur de Tracking)
  • Mélangeur 4 (extension VNA)
  • PLL, test préliminaire
  • PLL 2
  • PLL 1
  • PLL 3
  • PLL, réglage des fréquences et tests de puissance
  • Détecteur de phase
  • Filtre à cavité coaxiale
  • Amplificateur Fréquence Intermédiaire

Pour des raisons de simplicité, les batteries de tests sont regroupés par famille de modules (DDS, mélangeurs, PLL etc). Le préréglage du détecteur log, par exemple, se trouve en fin de chapitre "Test Unitaire" du détecteur log, même si sa mise en oeuvre vient après les chapitres sur les DDS.

Un schéma de branchement situé en début de chapitre de test explique clairement 
quel module doit être raccordé avec quel autre. 

Outre le MSA lui-même, il est recommandé d’avoir sous la main une série d’atténuateurs (10, 20, 5 et 2 dB) ou un atténuateur pas à pas capable de passer de 0 à 3 GHz, un voltmètre (3,5 digits conseillé) et un oscilloscope (entre 20 et 100 MHz de bande passante). Certains tests d’optimisation, tel que celui du détecteur logarithmique, peuvent être conduit si l’on possède un générateur de signal HF avec sortie variable (0/-100 dBm environ).

Enfin, il est conseillé de se fabriquer un petit cordon en câble coaxial semi-rigide terminé par deux connecteurs mâle et possédant un condensateur de 100 nanofarads en série. Ce cordon spécial, baptisé « DC Block » au cours des différentes procédures de test, sert à couper la composante continue présente sur la sortie de certains modules et rendre compatible cette sortie avec des entrées qui sont galvaniquement mises à la masse (et qui provoqueraient donc un méchant court-circuit en cas de branchement irréfléchi). La poursuite de certains tests en l’absence de ce module « DC-Block » peut provoquer la destruction d’un des modules en cours de test.

un raccord "coupeur de composante continue" (Cliquez sur la photo pour l'agrandir)

La complexité extrême de ce montage électronique nous contraint d'ajouter le schéma, lequel nous a coûté de nombreuses heures de travail avec un outil de CAO de 5eme génération

DC-Block schema.JPG
Le schéma du "coupeur de composante continue" (le fait de cliquer pour l'agrandir ne le rendra pas plus compréhensible)

Comme la vie, l'univers et tout le reste se résume à deux choses (le nombre 42 et l'art d'associer avec harmonie le genre masculin et le genre féminin), nous ne saurions trop conseiller de monter un DC-Block tel que celui illustré ci-dessus, c'est à dire constitué d'un tronçon de cable semi-rigide et de deux connecteurs. Il faut noter que tous les modules sont équipés de connecteurs femelle... pour intercaller un coupeur de composante continue entre deux modules, il faut qu'il soit lui-même doté de deux connecteurs, l'un mâle, l'autre femelle (ce qui n'est pas le cas de l'exemple ci-dessus). Un simple DC-Block fait avec deux prises SMA "chassis" serait bien plus simple à réaliser, mais nécessiterait à son tour deux adaptateurs mâle-mâle au moins d'un coté. Ce qui contribuerait à fausser certains calculs de pertes d'insertion, tout çà pour ajouter une capa ridicule.

Mise au point et validation globale

William Sprowls a rédigé deux documents concernant l'étalonnage d'une part et le dépannage du MSA d'autre part. Dans un premier temps, seule la partie "validation" est en cours de traduction.

Etalonnage du MSA

Lien direct vers les instructions d'étalonnage

La section "Validation/Etalonnage" est à suivre pas à pas une fois que le montage électronique du MSA est achevé et que les "Tests unitaires" ont été couronnés de succès. Nous conseillons aux personnes ayant atteint ce stade de la réalisation de n'aborder ce chapitre qu'une fois le MSA assemblé dans son boitier ou rack définitif, avec un câblage refait "à neuf" proprement routé et fretté, les plans de masse vérifiés, les entrées et sorties coaxiale reliées avec des câbles montés "étanches à l'eau" (couple de serrage des prises SMA vérifié ou liaisons directes proprement soudées). Si ces prérequis ne sont pas respectés, les opérations de réglage ne pourront garantir des réultats de mesure reproductibles, fiables et précis.

Le texte original en Anglais est disponible à l'adresse http://www.scottyspectrumanalyzer.com/msasetcal.html

Dépannage du MSA

La section dépannage - ou"troubleshooting guide"- demeure en anglais, la somme de travail nécessaire à sa traduction (et validation) ayant été jugée moins prioritaire que d'autres sections (manuels d'utilisation, procédure d'étalonnage finale etc). En cas de difficulté, n'hésitez surtout pas à vous inscrire sur la Mailing List de l'Electrolab pour demander de l'aide à l'un des membres de l'équipe.

Mise en oeuvre et Exploitation

Cette section, probablement la plus importante de tout le Wiki, regroupe :

  • Une description très généraliste de l'interface d'utilisation du logiciel de pilotage du MSA (version Anglaise, version Française)

Les différents manuels d'utilisation et de configuration rédigés par Sam Wetterlin et notamment :

- calibres OSL et standards d'étalonnage (Version Anglaise, Version Française)
- les ponts de mesure et de réflexion (Version Anglaise, Version Française)
- les interfaces de test série (Version Anglaise, Version Française)
- les interfaces de test shunt (Version Anglaise, Version Française)
- introduction aux mesure des paramètres S (Version Anglaise, Version Française)
- introduction à la lecture de l'abaque de Smith (Version Anglaise, Version Française)
- détermination de l'impédance caractéristique d'un DUT(Version Anglaise, Version Française)
- les stubs coaxiaux (Version Anglaise, Version Française)
- les pertes dans les câbles coaxiaux (Version Anglaise, Version Française)
- l'analyse des filtres et des quartz (Version Anglaise, Version Française)
  • Comment mesurer des composants passifs RLC (Version Anglaise, Version Française)
  • Comment mesurer le Q des selfs et les composants à Q élevé (Version Anglaise, Version Française)
  • Comment adapter des filtres d'impédances différentes (Version Anglaise, Version Française)


Outre ces documents relatifs à l'utilisation de l'appareil, Sam Wetterlin a également publié plusieurs articles décrivant des "modules complémentaires" destinés à améliorer ou étendre les fonctions de l'analyseur. Et notamment :

  Ces documents représentent la somme des manuels d'utilisation et des protocoles de mesure d'un analyseur de spectre/TG/VNA
  en général et du MSA en particulier. Ces documents peuvent être imprimés, reliés, et doivent cotôyer l'instrument, 
  au même titre que tous ses plans électroniques et notes de montage particulières. 
  Il s'agit là de la véritable documentation du MSA.

Ressources

Articles de vulgarisation

En Français et avec une approche pédagogique remarquable, les cours d'instrumentation, théorie de l'analyse de spectre de Jean Philippe Muller, du Lycée Louis Armand de Mulhouse. Cette série de cours (niveau BTS) porte sur une foultitude de sujets liés à la radioélectricité. Notamment :

- Un module sur l'analyse spectrale

- Un cours sur l'architectureet le principe de fonctionnement d'un A.S.

- Une série de vidéo très bien vulgarisées sur les lignes de transmission, les oscillateurs, les modulations (AM, FM), l'Histoire des télécoms

Il est vivement recommandé de commencer la série en regardant Les bases de l'analyse spectrale et Les applications de l'Analyse Spectrale

Il va sans dire que tous les autres modules et cours, accompagnés d'exercices théoriques, sont à lire sans retenue.


Extension 12 GHz pour le MSA à 3 Euros : Convertisseur de fréquence modifié par f6CXO à partir d'une tête de réception TV Sat vendue par Rota Franco pour une misère


Conventions de langage, jargon d'électronicien, expresions du domaine de la radio


Link Initiation aux boucles à verrouillage de phase destinée au débutants


Analyseur de Spectre, Analyseur Scalaire, Analyseur Vectoriel... qui fait quoi ?


Fred PA4TIM a écrit 8 articles de vulgarisation plus particulièrement destinés aux possesseurs d'analyseurs vectoriels "VNWA" conçu par Tom DG8SAQ. Ce sont là 8 petits bijoux de simplicité, de pédagogie, qui n’exigent aucune connaissance particulière et ne font pas appel aux mathématiques.

Cette « introduction à l’usage pratique du VNA » doit être lue par tout jeune Padawan suivant le chemin des chevaliers Jedi de l’analyse, et ce quelle que soit son arme de prédilection : VNWA, MSA, N2PK ou superbe occase dénichée sur eBay.

Une série de pages spécifiques a été consacrée à ces tutoriels ainsi qu'à divers articles plus particulièrement destinés à l'usage du VNWA de DG8SAQ (ainsi qu'au N2PK avec le logiciel VNWA et MyVNA)

Description

Le "machin" : http://www.scottyspectrumanalyzer.com/

Manuels et usages : http://www.wetterlin.org/sam/

Appro des composants

-> Le 1/2/2011 : 45$ pour les 20 PCBS, 50$ pour les boîtiers alu usinés + 30$ de frais de port (les 20 boîtiers sont lourds).

  • "kit" composants Mini-Circuits :

Mini-Circuits europe (UK) a sur demande un kit spécial "scotty" qui a pour référence KXMA-1+. Le tarif est fortement ristourné (après vérification sur le site web, c'est effectivement de la philanthropie de la part de Mini-Circuit).

->Le 18/11/2011 : 82€ + 20€ de frais de port = 102€.

Pour commander les composants Mini-Circuits aux tarifs négociés originellement par Scotty Sprowls, il est nécessaire d’effectuer une demande de devis par email, en faisant référence au

« kit KXMA1+ »

(ce document est un fichier d'exemple à expurger pour y insérer vos coordonnées). Le courriel doit être envoyé à l’attention de Monsieur Peter Gaines, PETER@UK.MINICIRCUITS.COM

Une fois le devis accepté, signé et renvoyé (scannez la feuille remplie à la main par exemple), vous devez joindre un autre document rempli et signé. C’est la

« déclaration d’utilisation d’utilisateur final»

C’est en quelque sorte un document qui prouve que vous n’utilisez pas ces composants à des fins militaires ou terroristes. Ce document est important et doit être rempli sérieusement, sous peine ne de se voir refuser la commande (il s’agit d’une contrainte légale qui touche toutes les entreprises US à l’export, et non un excès de paranoïa de la part de ce fournisseur en particulier).

A noter que le règlement de cette facture ne peut se faire que par carte de crédit, dont les numéros, date d'expiration etc doivent être communiqués par courriel à Monsieur Gaines. Cette opération peut en refroidir certains, et inciter d'autres à utiliser une procédure de chiffrement des correspondances. Précisons toutefois qu'il s'agit là d'une pratique de Mini-Circuit UK en vigueur depuis plusieurs années, et qui n'a jamais soulevé le moindre problème.

Le filtre à cavité peut être soit commandé en kit (soudure au four) soit de fabrication "maison". Le kit est proposé par Len Spiker (redmond2@iinet.net.au), qui lance quelques productions à un rythme très variable dépendant de la demande de la communauté. Ce kit, port compris, coûte aux environs de 75$.